Simulating U.S. Business Cash Flow Taxation

Seth G. Benzell¹, Laurence J. Kotlikoff², Guillermo Lagarda³, Victor Yifan Ye⁴

June 12, 2020

Abstract

Corporate taxation has come under increasing pressure around the world due to base erosion, profit shifting, and international tax competition, also known as the "race to the bottom". This paper uses the Global Gaidar Model, a 17-region, life-cycle simulation model, to study U.S. business cash flow taxation.

We consider three policies. The first replaces all federal and state corporate taxation with a business cash flow tax. The second replaces just the federal corporate tax with a business cash flow tax. The third considers a proportionate response by

eliminates all U.S. corporate taxation. The second is the adoption by the U.S. of a federal business cash flow tax. And the third is the second reform plus a matching, "race to the bottom" corporate tax-rate cut by foreign regions.

The GGM incorporates region-specific demographic change, region-specific productivity catch-up growth, and region-specific fiscal policy.

Our calibration is based on 2014 data, when the U.S. had a relatively high marginal effective corporate tax rate (METR). We start at this date in part to understand how corporate tax reforms can differentially impact regions that have above-average corporate tax rates.

All three reforms reduce the U.S. METR relative to that abroad. This leads to a major inflow of capital, a major rise in U.S. wages, and a commensurate decline in foreign capital and wages. The U.S. also benefits relative to other regions from earning a higher net return on its substantial net foreign asset position. Finally, lost or reduced corporate tax revenues are largely made up by increased consumption taxation. The associated redistribution away from older spenders to younger savers leads to more global saving and investment.

Interestingly, overtime, as U.S. wage rise, Americans take more leisure. Hence, U.S. GDP, while temporarily higher due to each of the above three factors, ultimately falls as a share of world output. Yet, overall and through time, there are welfare gains for Americans. In contrast, the reforms tend to lower welfare abroad, particularly among early foreign generations who don't benefit in the form of higher wages from the slow, but ultimately significant global capital-deepening.

Keywords: Corporate Tax Reform, Base Erosion and Profit Shifting, Economic Growth, Business Cash Flow Tax, Computable General Equilibrium, Wealth Taxation *JEL No.* F43, H20, H60

^{*}We thank the Gaidar Institute, Boston University, and The Fiscal Analysis Center for research support. The model used in this study was co-developed by the authors together with Maria Kazakova, Kristina Nesterova, and Andrey Zubarev of the Gaidar Institute, and Marco Solera of the Inter-American Development Bank.

¹Boston University and MIT Initiative on the Digital Economy; sbenzell@mit.edu

²Boston University, Fiscal Analysis Center, and National Bureau of Economic Research; kotlikoff@gmail.com

³Global Development Policy Center Boston University; glagard@bu.edu

⁴Boston University

1. Introduction

In recent decades two major challenges to international corporate taxation have emerged. The first is multinational firms manipulating their tax residence in order to avoid taxation. This phenomenon is known as base erosion and profit shifting (Dharmapala, 2014). The second is an accumulating understanding that corporate income taxes significantly reduce investment.¹ In response, both the developed (Devereux et al., 2002) and developing (Abbas and Klemm, 2013) world have lowered both statutory and effective corporate tax rates. Many high-profile economists bemoan this development, arguing that reducing corporate tax rates is a beggar-thy-neighbor strategy which will lead to a 'race to the bottom' to entice fickle international capitalists. The end result, these economists argue, is an undermining of all governments' finances and increased inequality.²

In this time of great uncertainty for international corporate policy, we evaluate the impact of corporate tax reforms and cuts under three scenarios. The first pair of scenarios considers a single major country – the U.S.– originally with a high marginal corporate tax rate, undertaking corporate tax reform. The final scenario simulates all regions of the world lowering their corporate tax rates.

We perform this analysis using the Global Gaidar Model (GGM). The GGM is a dynamic, 90period OLG, 17-region general equilibrium model. It features region-specific demographics (including year-specific, albeit exogenous migration), production technologies, household preferences over consumption and leisure, within-country inequality, and government fiscal policies. The parameters of the model are carefully calibrated to IMF fiscal data and U.N. demographic estimates and projections.

Analyzing corporate tax reform in a global model is critical. Corporate tax cuts encourage foreign investment, meaning their benefits come at the expense of capital accumulation in other regions. Even to evaluate the impact for a single country, a global model is essential. The U.S. is neither a small open economy nor a large closed economy. Therefore, assuming its policies have no effect on the world interest rate or, alternatively, that its domestic investment is wholly determined by its national saving, is unrealistic. By modeling the global economy, we properly capture the impact of US business tax reform on U.S. net capital inflows.

We consider two US specific tax reforms that were under consideration on the eve of the passage of the 2017 Tax Cuts and Jobs Act (TCJA). The first proposed reform was replacing the pre-2018 U.S. corporate income tax, which we model as a territorial tax, with a wealth tax levied in the form of a business cash flow tax (BCFT). The specific BCFT reform considered is the "Better Way" (BW) tax plan, proposed in 2016 by Republican members of the House Ways and Means Committee (Ryan et al., 2016). Although it was never enacted, the BW was the immediate precursor to the 2017 Tax Cuts and Jobs Act (TCJA).³ In addition to a BCFT reform, we also consider the US simply eliminating US corporate income taxation.⁴

What is the BCFT, and why is it analogous to a wealth tax? A BCFT taxes business income less three things – domestic investment, net exports and wages. This is similar to a Value Added Tax (VAT), which is a tax on income less the sum of domestic investment and net exports, i.e. consumption. Consequently, a BCFT effectively represents a proposal to tax consumption and subsidize wages. A single-rate VAT, applied to all products, including imputed rent on owner-occupied housing, would tax all consumption uniformly, whether paid for out of wages (current and future) or wealth. But a BCFT, applied to the production of all goods and services, would offset the tax on the component of consumption paid for out of wages. Hence, moving from a corporate income tax to a BCFT largely

¹See (Ohrn, 2018) and (Djankov et al., 2010) for recent examples.

²See, for example, (Sachs, 2011) and (IGM Forum, 2016)

³The major difference is that the TCJA omitted destination-based tax treatment of net exports.

⁴Ultimately the US would end up implementing a much more modest business tax reform in the TCJA, consisting of lowering the federal corporate tax rate by about a third, or about a sixth of the total US burden.

transforms U.S. business taxation into a wealth tax. More precisely, the BCFT is a proposal to tax consumption purchased out of wealth.⁵ Effectively, the BCFT is a proposal that would transform the corporate income tax from one that significantly discouraged investment and was only partially incident on the wealthy into the opposite.

We estimate that had BCFT been implemented in 2014, the US would, after a decade (i.e. in 2024), experience increases above baseline in the capital stock, GDP, and pre-tax wages for the high and low skilled of 20.5 percent, 6.8 percent, 6.3 and 7.5 percent, respectively. In the medium term these impacts are considerably larger. In the long run, the U.S. capital stock and wage rates remain above their baseline values. This is also true, but to a far lesser degree for U.S. GDP. U.S. GDP ends up close to its baseline level due to a decline in U.S. labor supply . This in turn is due to an income effect associated with higher after-tax wages. Moreover, under the reform, revenue from the consumption taxation rises faster than expenditure on the wage subsidy. This permits significant reductions in personal income taxation keeping constant the U.S. debt-to-GDP ratio. In the long run, GDP in the rest of the world is slightly higher. This is because the reform leads the US to accumulate more assets and take more leisure, leaving increased capital for the rest of the world.

US young people and future generations benefit the most from a BCFT. This reflects the importance of current and future wages in their total lifetime resources. The old are slightly worse off as the burden of higher consumption taxation outweighs the benefit of a higher rate of return on assets. The reform has little effect on intragenerational inequality, with rich and poor workers impacted roughly equally. This result echoes the findings of Auerbach et al. (2017b). In the rest of the world there is less of a generational dynamic, with all generations about 1% worse off due to the US reform. The world as a whole in the long-run is slightly better off due to the US undertaking this reform, (the global generation born in the mid 2030 is about 3 percent better off) as the rest of the world is only harmed a tad, and the US benefits massively.

A simpler corporate tax elimination would have similar results in the short run for the US. Both lead to an immediate GDP increase of about seven to eight percent. However, in the longer run the US benefits much less from a straight corporate tax cut than a reform. The extra tax revenue from the BCFT reform permits a decline, over time, in personal income tax rates. This leads US workers to take more leisure, leaving long-run GDP somewhat lower under the BCFT reform, but long-run welfare significantly higher.

One potential argument for the simpler corporate tax cut over BCFT reform is that it is more equitable intergenerationally. Because the BCFT reform is essentially a wealth tax, it leaves current retirees somewhat worse off (about 2 percent), while current retirees are essentially indifferent to a corporate income tax cut. The rest of the world is, in turn, only slightly worse off from either the US implementing BCFT reform or eliminating its corporate tax. However, because current and future US generations benefit much more from BCFT reform, the world as a whole is better off in this scenario.

Finally, we consider a global race to the bottom. In this scenario, we simulate the rest of the countries of the world responding to a US reform by cutting their corporate tax rates by the same proportion. The US's Federal corporate tax is constitutes 53.5% of the total US corporate marginal effective tax rate, so we consider other nations cutting their corporate tax rate by the same percentage. With this global tax-matching, the short-run increases in capital stock, pre-tax wages,

⁵The BW version of business cash flow taxation doesn't represent a perfect wealth tax because it only applies to the corporate sector. Since the BW applies only to products produced by the corporate sector, not all of consumption is implicitly taxed via the VAT component of the BW plan. For example, imputed rent on owner occupied housing is not produced by corporations. Similarly, not all labor would benefit from the implicit wage subsidy. Private, non-corporate employees, the self-employed, government workers, and non-profit workers would fail to be implicitly subsidized through the BW's BCFT wage deduction.

and GDP are for the US are smaller – 11.7 percent, 2.25 percent, and 6.3 percent, respectively. The long-run response is, however, remarkably similar. This reflects Americans' disproportionately large share of global assets. Although the rest of the world gradually catches up to the U.S. with respect to labor productivity, the U.S. share of global assets is roughly twice its share of capital in 2100. Thus, Americans benefit greatly from paying lower corporate taxes on assets invested abroad and the associated rise in the world interest rate. This effect almost exactly offsets the negative impact of lower wages from less capital investment from abroad. Symmetrically, other nations of the world are, in total, not made much better off by following the US in reducing their corporate taxes. However, this average indifference conceals dramatic heterogeneity. Rich and high tax regions benefit from the race to the bottom. The region constituting Japan, South Korea, Singapore and Hong Kong has two percent higher welfare in the long-run in a race to the bottom. Poor and low tax regions suffer, as they neither benefit from higher capital incomes or boosted capital imports. Eastern Europe is an example of a region that does particularly poorly in a global race to the bottom, with different generations being four to six percent worse off due to the global shift.

2. Background

Prior to the 2017 U.S. tax reform, there was broad consensus that the U.S. federal corporate tax regime was troubled. This consensus reflected international comparisons of statutory and marginal effective corporate income tax rates (METR). Table 1 presents pre-TCJA total (federal, state, and local) statutory tax rates calculated by Mintz and Bazel (2017), KPMG, and Ernst & Young. It also shows Mintz and Bazel (2017)'s total (federal plus state/provincial) METRs. The 17 regions, indicated in bold in table 1 and identified in table 2, are those specified in our model.⁶ Together they encompass over 99 percent of world population in 2014 and almost the entire world economy.

According to the Mintz and Bazel figures, the U.S. had the highest regional statutory corporate tax. Moreover, its METR of 34.6 percent was exceeded only by India's rate of 60.2 percent, Japan's rate of 40.9 percent, and Brazil's rate of 47.3 percent. In comparison, the WEU (Western European Union) rate was 25.4 percent, the EEU (Eastern European) rate was 15.1 percent, the UK rate was 25.0 percent, the Chinese rate was 26.0 percent, and the Mexican rate was 19.7 percent. The average METR across all non-U.S. developed countries was 19.2 percent.

Over half of the U.S. METR reflected federal corporate taxation. Yet federal corporate taxes collected less than 2 percent of GDP in 2017. Consequently, the federal corporate tax's main role may have been to discourage domestic investment. Shareholders could avoid the tax by relocating their investments abroad, leaving U.S. workers with fewer companies bidding for their services and less capital with which to produce. This lowers labor productivity, labor demand, and wages. The upshot is that U.S. workers can bear some, 100 percent, or more than 100 percent of the corporate tax incidence.⁷

⁶Regional tax rates represent GDP-weighted averages of country-specific values. For regions in which METRs from Mintz and Bazel (2017) are unavailable, we use weighted-average statutory rates from KPMG (2017).

⁷To see how labor could bear more than 100 percent of the burden of a corporate tax, consider a decision by country X to tax 100 percent of corporate profits. A tax rate that high would drive all corporations out of the country and dramatically lower wages. The reduction in aggregate wages would clearly exceed tax revenue (both pre- and post-reform). Hassett and Mathur (2010) provide evidence suggesting U.S. workers may bear well over 100 percent of the burden of the U.S. corporate income tax.

		Mintz	and Bazel	KPMG	E&Y
	Model	METR	Statutory	(Statutory)	(Statutory)
U.S.	34.6	34.6	39.1	40.0	39.0
WEU	25.4	25.4	30.5	28.5	28.5
France		38.5	38.0	33.3	30.0
Germany		26.7	29.7	29.8	33.0
Italy		6.0	28.5	24.0	24.0
Spain		20.0	25.0	25.0	25.0
Sweden		17.9	22.0	22.0	22.0
Ireland		13.0	12.5	12.5	12.5
Netherlands		21.1	25.0	25.0	25.0
JKSH	35.5	35.5	27.6	27.1	22.3
Japan		40.9	30.9	30.9	23.4
South Korea		30.0	24.2	22.0	22.0
Singapore				17.0	17.0
Hong Kong					16.5
China	26.0	26.0	25.0	25.0	25.0
India	60.2	60.2	34.6	30.0	34.0
Russia	27.9	27.9	20.0	20.0	20.0
Brazil	47.3	47.3	34.0	34.0	15.0
U.K.	25.0	25.0	20.0	19.0	20.0
CAN	23.9	23.9	28.0	27.9	27.6
Canada		21.0	26.6	26.5	26.0
Australia		28.7	30.0	30.0	30.0
New Zealand		20.5	28.0	28.0	28.0
MENA	17.5			17.5	18.0
Egypt				22.5	22.5
Saudi Arabia				20.0	20.0
Iraq				15.0	15.0
Jordan				20.0	35.0
Qatar				10.0	10.0
Mexico	19.7	19.7	30.0	30.0	30.0
South Africa	14.3	14.3	28.0	28.0	28.0
SAP	25.3			25.3	25.3
Indonesia		23.1	25.0	25.0	25.0
Malaysia				24.0	24.0
Philippines				30.0	30.0
SLA	27.5			27.5	27.5
Argentina				35.0	35.0
Colombia		23.7	40.0	34.0	34.0
Chile		7.8	24.0	25.5	25.5
Peru				29.5	29.5
SOV	17.5	.	.	17.5	17.5
Kazakhstan				20.0	20.0
SSA	30.6	.	.	30.6	30.1
Senegal				30.0	30.0
Cote d'Ivoire					25.0
EEU	15.1	.	.	15.1	15.1
Belarus				18.0	18.0
Bulgaria				10.0	10.0
Ukraine				18.0	18.0

Acronym	Region	Acronym	Region
USA	U.S.	MENA	Middle East and North Africa
WEU	Western Europe	MEX	Mexico
JKSH	Japan, South Korea, Singapore and Hong Kong	SAF	South Africa
CHI	China	SAP	South Asia Pacific excluding Australia
IND	India	SLA	Latin America excluding Mexico and Brazil
RUS	Russian Federation	SOV	Former Soviet Central Asia
BRA	Brazil	SSA	Sub-Saharan Africa excluding South Africa
GBR	The U.K.	EEU	Eastern Europe
CAN	Canada, Australia and New Zealand		

Table 2: Regions in the model and their acronyms. A full list of countries in each region is included in the appendix.

3. Business Cash Flow Taxation

A BCFT constitutes a VAT plus a wage subsidy. Some simple accounting shows this. In (1), Y stands for GDP, gross domestic product, measured at producer prices, i.e., net of net indirect business taxes. GDP is equivalent to gross value added.

$$Y = C + I_d + X - M, (1)$$

where C denotes national consumption, I_d domestic investment, X exports, and M imports. A comprehensive VAT taxes Y (value added), but it also permits deductions for domestic investment, I_d , and net exports, X - M. The deduction of net exports is called *destination-based* treatment of foreign transactions, alternatively destination-based border adjustment tax (BAT). It's needed to ensure that the VAT's tax base encompasses all of consumption, including consumption imported, on net, from abroad. ⁸ Business cash flow, BCF, is defined as

$$BCF = Y - I_d - (X - M) - W,$$
 (2)

where W stands for wages. Combining (1) and (2) gives

$$BCF = C - W. \tag{3}$$

Hence, the BCFT represents a tax on consumption combined with a subsidy to wages. As with other destination-based VATs, the House tax plan's BCFT would exempt consumption of imputed rent on owner-occupied homes and durables. It would also subsidize wages, but only the wages of workers in the for-profit business sector. For these reasons, we model the House tax plan as a consumption tax combined with a wage subsidy. The current federal corporate tax system is eliminated, with the net effect of these two changes keeping revenues as a share of GDP fixed.⁹

⁸Some commentators view the BAT as favoring exports over imports, i.e., as effectively imposing a tariff on imports. But, as pointed out in Auerbach et al. (2017a), and Auerbach et al. (2017b), exchange rates and domestic and foreign prices should adjust either immediately or rapidly to eliminate such a bias. Moreover, since short-run trade deficits necessarily entail long-run trade surpluses as countries receive payment for exporting more goods than they import, any positive short-run impact on revenues will be exactly offset, when measured in present value, by long-run revenue losses. Although the exchange-rate adjustments associated with a BAT has no present-value revenue impact, it can redistribute wealth among global asset holders depending on the currency composition of their assets. In the case of the House plan version of BCFT reform, American wealth holders could, based on their current foreign asset positions incur a non-trivial capital loss. But that assessment is based on the current currency denomination of U.S. net foreign asset holdings, which could be modified far in advance of the implementation of the reform. This said, we have run this reform taking account of the capital loss that would arise under existing conditions. This loss makes essentially no difference to our findings. Another issue associated with the BAT is what would happen were it not included in the tax reform. In this case, the VAT would be origin rather than a destination based. Since, as just indicated, the BAT produces no revenue in present value, its exclusion from the reform would not change the government's long-term finances. It would, however, alter, the government's reported cash flow. Moreover, as stressed by Auerbach and Gale (2017), an origin based VAT is far easier to evade using international transfer pricing and could also induce companies to maintain their foreign operations in order to effect such tax evasion.

⁹The specific implementation of business cash flow taxation we focus on was the one proposed in the June 2016 "Better Way" tax reform plan. The plan calls for major changes to business and personal taxation. This paper's focus is on the plan's business tax reform.On the personal level, the plan reduces the number of personal income tax brackets from 7 to 3 and lowers the top income-tax rate from 39.6 percent to 33 percent. It eliminates exemptions, the Alternative Minimum Tax, and the deductibility of state income and property taxes. It increases both the standard deduction and modifies the child tax credit. We do not model these changes. The business tax reform replaces the U.S. federal corporate income tax with a 20 percent business cash flow tax (BCFT), which permits immediate expensing of new investment and deductibility of wages, but precludes deductibility of net interest. Eliminating deductibility of net interest would likely have other benefits, including dramatically lowering corporate leverage, eliminating the distortion in favor of corporate

4. The Model

The GGM, developed in Benzell et al. (2015), Benzell and Lagarda (2017) and Benzell et al. (2018) is a computable general equilibrium model of the global economy. Versions of the model differ in the number of regions, how death and inheritances are modeled for younger agents, and other details. The model's 17 regions comprise 98 percent of world GDP. Table 2 identifies the model's regions.

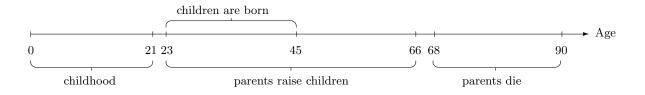
In addition to featuring multiple regions and 90 overlapping generations, GGM includes two skill groups as well as region and age-specific, time-varying fertility and mortality rates. All told, the model, which is given 500 years to reach its steady state, contains well over 1 million unknowns and an equal number of equations. In the model's solution (equilibrium), all equations, including all budget constraints, are satisfied to a high degree of precision.

The model not only produces precise results. Its results are highly intuitive. The model's qualitative response to changes in fiscal policy, demographics, or preferences are what would be produced in a simpler model. However, simplifying our model by reducing the number of regions, limiting the number of periods, ignoring demographics or including less detailed fiscal policy would produce inferior quantitative results.

The GGM features one consumption and investment good. The following description of the GGM draws heavily and sometimes verbatim from Benzell et al. (2015). We summarize prior research on corporate tax incidence, with an emphasis on simulation studies, in Appendix Section 1.

4.1. Demographics and Households

As figure 1 depicts, agents live to at most age 90, creating 91 generations in any year. Between ages 0 and 20, agents are non-working children supported by their parents. At age 21, agents enter the workforce, earn wages, consume, and save. They also leave home. As in Kotlikoff et al. (2007), between ages 23 and 45, agents give birth, annually, to fractions of children. Fractional births facilitate calibrating realistic age-distributions of each region's population, initially and through time. Agents are born into one of two skill groups. Children born to age-23 agents reach 21 when their parents are age 44. Those born to age-45 agents reach 21 when their parents are 66.


Agents face an uncertain date of death, which can occur at any age. Our model has no intentional bequests. Bequests arise solely because agents are not fully annuitized, i.e., they die with assets they had hoped to spend through the rest of their lives. Low-skilled individuals are always born to low-skilled parents, and vice versa, so there is perfect intergenerational immobility. In bequeathing to one's children, the high skilled bequeath to the high skilled and the low skilled bequeath to the low skilled.

The model also includes age- and region-specific net immigration. Every year new immigrants in each skill and age group arrive with the same number and age distribution of children and the same level of assets as natives with of the identical skill-level and age. The ratio of high to low skilled immigrants/emigrants of every age is the same as in the given country. Each region's age- and year-specific net immigration rates are set exogenously based on U.N. projections. Once immigrants join a native cohort, they experience the same age-specific fertility and mortality rates as native-born cohort members.¹⁰

borrowing, and improving business-sector financial stability. The present value benefit from immediate expensing fully offsets the present value of taxes levied on the cash flows from net investment. This makes the BCFT's METR zero. Pass-through business entities would face a top rate of 25 percent, which raises major concerns, not addressed here, of reclassifying personal income that would otherwise be taxed at a rate above 25 percent, as pass-through business income.

¹⁰Our surely unrealistic assumption that immigrants arrive with precisely the same skill mix and asset holdings as native-born agents greatly simplifies the model.

Figure 1: The individual life-cycle

Individual saving, consumption, and labor decisions in the model are governed by a timeseparable, nested, CES utility function. Omitting region-specific subscripts, lifetime utility $U_{a,t,k}$ of an agent age *a* at time *t* belonging to skill-class *k* takes the form:

$$U_{a,t,k} = V_{a,t,k} + H_{a,t,k},\tag{4}$$

where $V_{a,t,k}$ records the agent's utility from their own consumption and leisure and $H_{a,t,k}$ denotes the agent's utility from their children's consumption. The two sub-utility functions are defined by:

$$V_{a,t,k} = \frac{1}{1 - \frac{1}{\gamma}} \sum_{i=a}^{90} \left(\frac{1}{1 + \delta}\right)^{i-a} P_{a,i,t} \left[c(a, i, t+i, k)^{1 - \frac{1}{\rho}} + \varepsilon \ell(a, i, t+i, k)^{1 - \frac{1}{\rho}}\right]^{\frac{1 - \frac{1}{\gamma}}{1 - \frac{1}{\rho}}}$$
(5)

$$H_{a,t,k} = \frac{1}{1 - \frac{1}{\gamma}} \sum_{i=a-23}^{22} \left(\frac{1}{1+\delta}\right)^{i-a} P_{a,i,t} K_{a,i,t,k} c_{K_{a,i,t,k}}^{1 - \frac{1}{\gamma}}, \tag{6}$$

where $P_{a,i,t}$ is the probability that an agent who is age a at time t will survive to age i, c(a, i, t, k) is the age-i consumption of an agent in skill class k who is age a at time t, l(a, i, t, k) is the age-i leisure of an agent in skill class k who is age a at time t, $K_{a,i,t,k}$ is the number of children of an agent age aat time t in skill class k when the agent is age i, and $c_K(a, i, t, k)$ is consumption per-child at time tof an agent age a in skill class k when the agent is age i.

The parameters $\delta, \rho, \varepsilon$ and γ denote the rate of time preference, the intratemporal elasticity of substitution between consumption and leisure, the leisure preference parameter, and the intertemporal elasticity of substitution, respectively. These values are summarized in table A26. δ is region and cohort specific, while the other preference parameters are fixed across regions and time. The probability of an agent age a at time t surviving to age i is

$$P_{a,i,t} = \prod_{z=a}^{i} [1 - d_{a,z,t}], \tag{7}$$

where $d_{a,z,t}$ is the agent's probability of dying at age z conditional on surviving to that age. Fertility, immigration, and mortality rates are based on U.N. projections through 2064, the 50th year of the model's transition. IMF fertility rates for years before 2014 are also taken in by the model so as to properly assign children to parents for the purpose of bequests. After 2064, age-specific fertility rates, immigration flows, and mortality rates are set endogenously to keep births at each age, immigration, and mortality constant at 2064 levels.

Assets $A_{a,t,k}$ of a skill-k agent who is age a at time t (and who survives into the subsequent period) evolve according to

$$A_{a+1,t+1,k} = [A_{a,t,k} + I_{a,t,k}](R_{t+1}) + w_{a,t,k}[h_{a,t,k} - \ell_{a,t,k}] - T_{a,t,k} - C_{a,t,k}, \quad (8)$$

where R_t is the pre-tax return on investment, $C_{a,t,k}$ references aggregate consumption ($c_{a,t,k} + K_{a,t,k}c_{K_{a,t,k}}$), $I_{a,t,k}$ are inheritances received in year t, $h_{a,t,k}$ is the endowment of time, $\ell_{a,t,k}$ is time spent on leisure and $T_{a,t,k}$ is net taxes (taxes paid net of pension and other transfer payments received). $T_{a,t,k}$ includes all personal taxes, including taxes on asset income, taxes on labor income and consumption taxes.

Total private assets in the model consist of government bonds, capital, and the present value of privately owned energy rents.¹¹ All assets have the same rate of return, so agents are indifferent about the elements of their portfolio.

4.2. The Production Sector

Each region's GDP, Y_t , equals the sum of an energy-endowment flow X_t and aggregate non-energy output Q_t :

$$Y_t = X_t + Q_t. (9)$$

We include fossil fuel production in our calculation of Y_t because it is a major public and private asset, especially in petro-states like Russia. We model the endowment of energy in each region as generating an annual flow of the model's single consumption and investment good, net of extraction costs, where all regions exhaust their energy resources simultaneously.¹²

The model specifies the size of the global energy flow, how it is distributed across regions, and the share of each region's flow owned by the government. These variables are calibrated to World Bank data on the distribution of fossil fuel profits and IMF fiscal data. Each region's flow is constant until exhaustion. Since the global economy grows, the share of world GDP originating in the fossil-fuel sector declines each year until 2083 when we assume exhaustion occurs. The government's share of its region's flow of energy rents is treated as a receipt. Energy flows not owned by the government are a private asset.

Non-energy output is produced via a Cobb-Douglas technology that uses capital, K_t , and two types of labor, $L_{1,t}$ and $L_{2,t}$, i.e.:

$$Q_t = \phi K_t^{\alpha} L_{1,t}^{\beta_l} L_{2,t}^{\beta_h}, \qquad (10)$$

where α is the share of capital income in production, β_l is the share of low-skilled labor input, β_h is the share of high-skilled labor input, and $\alpha + \beta_l + \beta_h = 1$. The parameter ϕ references total factor productivity. Firms maximize profits π_t ,

$$\pi_t = Q_t - \sum_{k=1}^2 w_{k,t} L_{k,t} - (r_t + \delta_k) K_t - T_t^k,$$
(11)

where $w_{1,t}$ is the wage of low-skilled workers, $w_{2,t}$ is the wage of high-skilled workers, r_t is capital's rental rate, and T_t^k is corporate taxes. Note that we are treating corporate taxation in all regions, including the U.S., as territorial.¹³ The ratio of low-skilled to high-skilled workers exceeds the ratio of their factor shares. This means higher wages for the high skilled.

¹¹Agents are also allowed to hold negative assets at points in their life. Therefore, there is a fourth asset, private debt, which is in zero net supply.

¹²This is clearly a crude treatment of the energy sector, but one that keeps the model simple. It captures fossil fuels' role as a major source of government income and private assets. In ongoing co-authored work we are formally modeling dirty and clean energy sectors as well as climate change and its associated damage.

¹³The U.S. nominally taxes world-wide corporate income. But it permits unlimited deferral, which appears to effectively transform the tax into a territorial levy. Indeed, discussions of the House plan have included proposals to tax repatriated retained foreign profits at extremely low rates.

Profit maximization requires

$$w_{1,t} = \beta_l \phi K_t^{\alpha} L_{1,t}^{\beta_l - 1} L_{2,t}^{\beta_h}, \tag{12}$$

$$w_{2,t} = \beta_h \phi K_t^{\alpha} L_{1,t}^{\beta_l} L_{2,t}^{\beta_h - 1}, and$$
(13)

$$r_t = (1 - \tau_t^k) \left(\alpha \phi K_t^{\alpha - 1} L_{1,t}^{\beta_l} L_{2,t}^{\beta_h} - \delta_K \right),$$
(14)

where τ_t^k references the METR.

4.3. The Government Sector

Every region's government raises revenues and makes expenditures. Pensions are partially paid for through a dedicated tax. All other expenditures are paid for via taxes collected from households of both skill groups and all ages, corporate tax revenues net of rebate T_t^k , energy-sector revenue X_t^g , and new borrowing ΔB_t . General expenditures consist of purchases of goods and services, C_t^g , pension payments that are not financed via payroll taxes ρe_t , other transfer payments f_t , and interest on existing debt $r_t B_t$:

$$\sum_{k=1}^{2} \sum_{a=21}^{90} T_{a,t,k} N_{a,t,k} + T_t^k + X_t^g + \Delta B_t = C_t^g + \varrho e_t + f_t + r_t B_t,$$
(15)

where ρ denotes the share of these pension payments financed by general revenues. The left-hand side of 15 adds all methods of finance – the sum across cohorts and skill groups of personal taxes, total corporate taxes, energy sector revenue, and net borrowing. The terms $T_{a,t,k}$ and $N_{a,t,k}$ reference personal taxes paid by cohort age a, in year t, of skill group k.

Government Revenues

In the baseline scenario, all governments first raise revenue with natural resource, corporate, and pension taxation. The remaining revenues needed to keep debt-to-GDP ratio fixed come from a mix of consumption and income taxation. The proportional elements of its income and consumption taxes are selected such that the ratio of income-tax to consumption-tax revenue remains fixed through time. This ratio is calibrated on its 2014 value. In all regions we jointly model federal and local taxation.

Consumption taxation is fully proportional. Income taxation follows

$$R_t = \tau_t W_t + \frac{\varphi_t W_t^2}{2},\tag{16}$$

where R_t is total revenues from the income tax, τ_t is the endogenously calculated average income tax rate, W_t is total labor income, and φ_t an exogenously set progressivity term. For the U.S., the WEU, JKSH, CAN, EEU, SAP, MENA, SLA, and SSA this takes the value 0.3. For the other regions it is 0.

To generate realistic marginal and average corporate tax rates, we assume that agents receive, via a lump-sum rebate, a fraction of gross corporate tax revenues. This rebate is proportional to an individual's asset holdings. It is denoted $T_{a,t,k}$. The total size of the rebate is calibrated by region to match the corporate tax revenues collected in the region. For the U.S. the METR is very high, while revenues are quite small. This is reconciled in the model via a rebate of 46 percent – the highest of the 17 regions. Corporate taxes, T_t^k , equal the corporate tax rate τ_t^k times output net of labor costs and depreciation:

$$T_t^k = \tau_t^k [Y_t - \sum_{k=1}^2 w_{k,t} L_{k,t} - \delta_K K_t]$$
(17)

Pension taxes on labor income are independently considered. PY_t references the aggregate payroll-tax base. PY_t differs from total labor earnings due to the ceiling on taxable wages. The ceiling for each country is reported in table A6.

The sum of the average employer plus employee payroll tax rates $\hat{\tau}_t^p$ are based on each region's total pension expenditure e_t . Thus,

$$\hat{\tau}_t^p P Y_t = (1 - \varrho) e_t, \tag{18}$$

where $(1-\varrho)$ references the share of pension expenditures that is financed via payroll taxation. Due to contribution ceilings as well as tax evasion and avoidance, statutory payroll tax rates can differ from the average payroll tax rate. Above the contribution ceiling, marginal social security contributions are zero and average social security contributions fall with the agent's income. To accommodate this non-convexity in the budget constraint, we assume that the highest earnings class in each region with a payroll tax ceiling pays payroll taxes up to the relevant ceiling, but faces no payroll taxation at the margin. The payroll tax rate adjusts to pay a region-specific constant share of contemporaneous expenditure on pensions. The remainder is funded by general government revenues. Country specific payroll tax ceilings, as a multiple of average wage income, are reported in table A6. Natural-resource revenues are assumed to be constant at 2014 levels. They therefore decline as a share of GDP until fossil fuels are assumed to deplete in 2083.

We model the House reform as implementing a proportional consumption tax plus a proportional wage subsidy. The House tax plan calls for a 20 percent VAT rate. But we assume a 15 percent rate in our model to account for the roughly 25 percent of U.S. consumption that is imputed rent from owner-occupied housing – consumption that would not be subject to the plan's 20 percent VAT. We adjust the wage subsidy rate so the House plan generates the same year-1 revenues as the corporate tax in our baseline simulation. In other words, we assume, following Auerbach et al. (2017b), that the business tax reform is revenue neutral. The resulting wage subsidy rate is 12.1 percent.

Government Expenditures

Governments in the model have two age-specific spending programs, one general expenditure program, one non-age specific transfer program, and a pension program. The two age-dependent spending programs are education and health. The general expenditure program can be thought of as defense spending, but is calibrated on all non-education and health government consumption programs. The non-age specific transfer program can be thought of as a disability program. It is a perfectly equal lump-sum transfer to all adults in the country. It is calibrated on all governmental non-pension transfers.

Age-specific per-capita purchases (i.e. on health and education) adjust to changes in the size and age structure of the population while growing at the rate of non-energy sector output growth. Other government purchases of goods and services C_t^g , such as defense spending, are fixed through time as a share of non-energy sector output.

Government spending on health care, education, and disability follow

$$E_t = \zeta Q_t \sum_{k=1}^{2} \sum_{a=21}^{90} Z_{a,t} N_{a,t,k}$$
(19)

where $N_{a,t,k}$ is the population at a given age, $Z_{a,t}$ is the country and spending-program specific age-expenditure profile, Q_t is non-energy sector output, and ζ is a country and program specific shift term. This term is calibrated to correctly match program expenditure as a share of GDP.¹⁴

¹⁴Age-expenditure profiles and overall expenditure parameters for these programs are available upon request or in the replication files. Sources are summarized in appendix table A27.

In most regions, we assume an additional growth rate of 1.0 percent per year in health expenditures per capita from our initial year, 2014, through 2035.¹⁵ In China and India, age-specific, per capita health care outlays are assumed to grow at a faster pace – 4 percent during the first 35 years of the transition. All government health care expenditures are treated as government consumption, whereas pension and non-pension transfer benefits are treated as fungible transfers to households.

As for pension benefits, consider an agent who retires in year i at the exogenously set retirement age \bar{a}_i . Their pension benefit $Pen_{a,t,k}$ in year $t \ge i$ when they are age $a \ge \bar{a}_i$ is assumed to depend linearly on their average earnings during their working life $\bar{W}_{i,k}$. Thus,

$$Pen_{a,t,k} = \nu_1 \bar{W}_{i,k},\tag{20}$$

where ν is the pension-replacement rate. Table A6 reports parameters for the pension system in the model. Retirement age is the mandatory age of retirement in a country. After this age, agents make no wage income, but receive a pension benefit. The size of the pension benefit is a linear multiple of the individuals' lifetime average wage income. After retiring, pensioners' incomes are constant at this level.

For individuals alive in 2014, we assume that wages before that year were at 2014 levels, and that their lifetime productivity follows their country's 2014 age-productivity profile. The share of the pension system paid for by a pension tax is equal to the ratio of pension tax revenues to expenditures in 2014. Data on retirement ages and the pension replacement ceiling are from the World Bank Reports, social security institutes' websites and Trading Economics (2017).

4.4. Solution Method and Calibration

The model is solved using Auerbach and Kotlikoff (1987)'s iterative Gauss-Seidel method. The model is given 500 years to reach its new steady state. All simulations reported below converge to a very high degree of precision. The initial year chosen for our policy simulations is 2014, which corresponds to the last year for which we comprehensive data.¹⁶

The solution method begins with guesses of the time paths of the world interest rate, region-specific asset holdings, and region-specific supplies of skilled and unskilled workers. The amount of capital available world wide in a given period is set equal to the that period's world-wide supply of net private assets less total world-wide government debt plus non-government owned energy flows.¹⁷ Since this path of world-wide capital is predicated on a guess of the path of world-wide assets, it too is a guess.

Next, demand for each non-U.S. region's capital is calculated in each period based on (14) and that period's guessed levels of skilled and unskilled labor. Subtracting each period's total demand for capital across all non-U.S. regions from that period's guessed global supply of capital gives us a guess of that period's capital in the U.S.

Based on exogenously determined region-specific METRs, and the region-specific guesses of capital, we can use (12), (13) and (14) to determine each region's time paths of wage rates as well as the time path of the U.S. after-METR return to capital. Given the path of wage rates and the world interest rates, utility maximization in each region by each generation determines new temporary guesses of region-specific time-paths of total labor and asset supplies. The U.S. after-METR path of

 $^{^{15}}$ As shown in Hagist et al. (2009), this is a rather conservative assumption concerning future growth in health care benefit levels.

¹⁶Although the House tax plan would not go into effect for a number of years beyond 2017, we believe that starting with 2014 will give essentially the same results.

¹⁷Debt to GDP is held fixed in the baseline as well as policy simulations. Given each country's reported initial debt-to-GDP ratio and our calculated path of GDP, we determine each country's absolute path of debt.

returns to capital is taken as our new guess of the world interest rate time path. The new guesses of the time paths of region-specific asset holdings, labor supplies, and the world interest rate are dampened with the prior guessed time paths to form the new set of guessed paths used in the next iteration.

As mentioned, we give the model 500 years to reach its new steady state. A long period is needed because the global demographic structure doesn't stabilize until 2155. In practice, the model reaches its final steady state in about 300 years.Convergence is reached after all goods, labor, and capital markets clear to approximately one one-thousandth of world output.

As indicated, we calibrate the model's demographics based on U.N. population data in United Nations (2016d). The model's age-, year-, and country-specific fertility, mortality, and immigration rates are calibrated to match official projections through 2064. After 2064, fertility rates are endogenously set each year to stabilize total births. This entails gradual changes in fertility rates that lead, by 2154, in conjunction with our assumed stable net immigration rates, to a stable population and age structure in each region. We assume that 30 percent of the U.S., Canadian, Western European, Eastern European, Japanese+ and Russian work forces are high skilled. For all other regions, including China and India, we assume that 25 percent of the workforce is high skilled.

We select region-specific time-preference rates, initial labor-productivity levels, and governmentconsumption levels to match 2014 data, the latest year for which such data are comprehensively available. In our calibration process we use each region's initial time-preference rate as the primary means to match the observed 2014 region-specific ratio of household consumption to GDP. Table A7 documents the calibration of time preferences in the model. While the U.S. is sometimes viewed as having a high time-discount factor, that is not the value we calibrate in the model. The U.S. is calibrated as having a relatively strong preference for *delayed* consumption. This is required to prevent unrealistically high U.S. household consumption driven by the U.S.' disproportionately large share of world assets. This parameterization has important implications for the long run impact of corporate tax reform. It means that the U.S. remains a disproportionately large holder of world assets and, thus, disproportionately benefits from a global cut in corporate income taxation.

We assume that some regions' time preference rates evolve over time. We do so for the three largest countries in the model which discount the future less than the U.S. does. This prevents these countries from owning too large a share of world assets in the long run. New cohorts are born with time preferences linearly more similar to the U.S.'. New Chinese cohorts' time preference converge to the U.S.' over the course of 25 years. The preferences of cohorts in the WEU and Japan converge halfway between the original cohorts' preference and the U.S.' over the course of 50 years.

Each region's initial labor productivity is the main lever for determining relative GDPs by region. Each region's per-person spending on different government programs is our key means for matching observed region-specific ratios of government consumption to GDP.

Initial region-specific labor productivity coefficients (efficiency units per worker) are calibrated to match each region's initial level of per capita GDP. The age- and year-specific productivity profile of a low- or high-skilled worker age a in period t is given by

$$E(a,t) = \xi(a,t)e^{4.47 + 0.033(a-20) - 0.00067(a-20)^2} (1+\lambda)^{a-21},$$
(21)

This profile is that used by Auerbach and Kotlikoff (1987). The labor productivity parameter ξ is country and cohort specific. The U.S. coefficient is fixed at 1. Based on the data, every other region's labor productivity coefficient starts below 1. But we assume convergence to 1, i.e., each region's workers eventually achieve the U.S. labor-productivity level. This convergence occurs on a cohortby-cohort basis. Thus, successive cohorts become more productive as they reach age 21 and enter the workforce. Our initial conditions incorporate the assumption that all cohorts alive in 2014 in a given region have the same level of productivity. All countries identically experience λ , 1 percent time augmenting productivity growth in every year. Table A8 reports initial productivity levels and catch-up periods in the model.

We set each region's initial debt-to-GDP ratio to ensure that the model's interest payments are the same share of GDP as observed in the 2014 data.¹⁸ Other fiscal parameters determining per capita government spending on health care, education, and general outlays are set to match observed expenditures as a share of GDP.

All our simulations keep debt fixed as a share of GDP in each region. In the baseline simulation and our first policy simulation, which eliminates all U.S. corporate taxation (i.e., sets the U.S. METR and corporate-tax rebate to zero), income and consumption tax rates adjust to balance the budget. In our second two policy simulations – the House tax plan and the House tax plan but in the context of other regions cutting their METRs by the same percentage as the cut in the U.S. METR – we fix the consumption tax rate and adjust the income tax rate to achieve budget balance. This reflects our modeling of the House tax plan as establishing an explicit consumption tax rate plus a wage subsidy. Convergence in our policy simulations is as accurate as convergence in our baseline.

Relative asset holdings in each country are set to match data on privately held assets from Credit Suisse (2017). Initial age-asset distributions in each country are set to match the asset agedistribution reported in the U.S. Survey of Consumer Finances (Bricker et al. (2014)). The overall level of private assets in the world is set to generate an initial interest rate of about 5 percent.

Fossil fuel rent data is taken from The World Bank (2014). The level of fossil fuel rent flows in each region in is set to correctly match their true shares of GDP. The share of this flow owned by the government is selected to match the natural resource revenue share of government income.

We calibrate the GGM using a variety of data sources including, but not limited to, UN (2016a; 2016c; 2016b; 2016d) demographic data and IMF (2016; 2014) Macro-fiscal aggregates. We document the precision of our calibration procedure in Appendix Section 2.

5. Findings

This paper simulates a baseline and three scenarios. Each keeps the current debt-to-GDP ratio fixed through time. The baseline scenario assumes all regions' 2014 tax policy is maintained indefinitely. The second permanently eliminates all U.S. federal and state corporate income taxation while raising income and consumption taxes to make up for lost revenue. We consider this elimination policy not because it is likely to arise, but to provide a point of reference for our remaining two policy simulations – adoption of BCFT reform with no fiscal response by foreign regions and adoption in the context of an equal-sized percentage cut by foreign regions in their METRs. We label this fourth scenario 'global tax matching.' The BCFT reform and the global tax-matching simulations fix the model's U.S. consumption tax and wage subsidy rates as discussed below and adjust the income tax each year to balance the budget. We run all simulations starting in 2014, the latest year for which we have comprehensive global data.

5.1. Baseline Findings

Tables A9 and A10 present key information about the baseline transition path.¹⁹ Our striking, if not unexpected finding is the decline through time in the importance of the U.S. economy. The U.S. accounts for 17 percent of world GDP in 2014, but only 5 percent in 2100. To put this projected decline in U.S. world economic dominance in perspective, the U.S. share of world output in 2100 will roughly equal the current Middle East and North African share. In short, the U.S. is predicted to become a

¹⁸The debt-to-GDP ratio is set at a negative value for regions with positive net government assets.

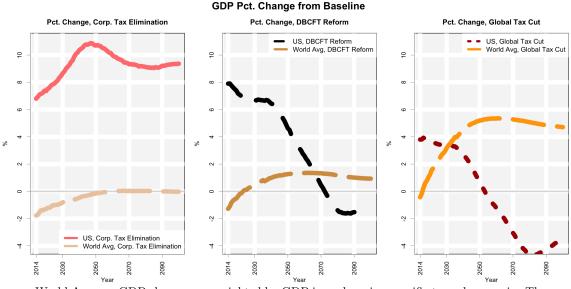
¹⁹The Appendix contains detailed results for this and our three policy simulations.

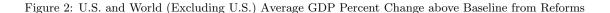
small economic player on the global stage. This reflects both demographics and catch-up growth. As table A10 shows, the big end-of-century economic powerhouses will be China, India, MENA (Middle East and North Africa), and SSA (Sub Saharan Africa). The inclusion of the latter two regions may be surprising. But by the end of this Century, Sub Saharan Africa's GDP will, according to our model, exceed the combined GDPs of China and India. MENA and SSA both experience tremendous population growth. Indeed, SSA's population is projected to more than quadruple by 2100.

The MENA and SSA regions, have, in the main, yet to take off economically. But based on demographic projections and the potential for catch-up productivity growth, they could join China and India as the globe's greatest economic powerhouses, accounting, collectively, for 84 percent of total global GDP. The potential economic expansion of MENA and SSA is interesting for understanding global economic development, but it's not critical to assessing the U.S. economic impact of the House tax plan. We have run our model under the extreme assumption of no catch-up growth in either region. Doing so makes little difference to the proportional impact of our U.S. tax-reform results.

Another important baseline finding concerns U.S. GDP growth. It's predicted to be quite slow, averaging just 1.10 percent through the end of the Century. There are two reasons. First, as the labor forces of non-U.S. regions become larger and more productive, these regions bid capital away from the U.S. Second, global saving rates fall over time as regional saving preferences change, current developed regions grow older (which reduces their saving), and high-saving regions become smaller players in the global economy.

5.2. Eliminating All U.S. Corporate Taxation


Consider, first, immediate elimination of all US federal and state corporate income taxes. The impacts of this policy on U.S. macro variables and factor prices are reported in tables A11, A12, A15, and A13. The first column in each table shows the baseline path of the U.S. variable under consideration. The other columns show percentage changes from the baseline. Figure 2 contrasts U.S. and world (excluding US) GDP growth, in terms of percentage points above or below baseline, of all three policy scenarios.


Eliminating U.S. corporate income taxation in its entirety produces pronounced and sustained increases in GDP. The initial increase is roughly 7 percent. This rises above 9 percent by 2035. The chief reason for the model's remarkably higher path of GDP is the increase in the U.S. capital stock, which is shown in table A12. We calculate a very large– roughly 25 percent – increase in capital demand. Since our model has no adjustment costs, this adjustment occurs immediately.²⁰ By mid-Century, capital is some 40 percent higher than would otherwise be the case.

This capital accumulation does not reflect increased saving by U.S. agents. On the contrary, it arises from capital inflows from abroad. Indeed, in the short run, the policy reduces capital stocks in other regions by as much as 6 percent. Over time, the reductions are much smaller. Yet for the U.S., they add up. Table A10 shows that eliminating U.S. corporate income taxation entails short-term losses in GDP in the rest of the world. Overall these regions experience medium- and long-term increases in output due to workers supplying more labor to make up for their lower real wages. There is minimal heterogeneity across foreign regions in the impact of corporate tax elimination on GDP (see figures A2 through A5).

Table A15 shows that totally eliminating U.S. corporate taxation reduces U.S. labor supply by 2 to 3 percent among both low-skilled and high-skilled workers. Table A13 shows very large increases in real wages both for low- and high-skilled workers, ranging as high as 13.9 percent. These changes

 $^{^{20}}$ Adding adjustments costs to our model would slow down by a few years, but not fundamentally alter this large capital inflow. Including these costs would, however, represent a major additional computational challenge as the model would need to jointly solve for 17 region-specific paths of q – the ratio of the market price to the replacement cost of capital – in addition to resolving all other endogenous variables.

World Average GDP changes are weighted by GDP in each region specific to each scenario. The U.S. is not included in world GDP change averages.

are reported in figure A1. In contrast, table A17, which presents levels of (not percentage changes in) world interest rates, indicates much smaller changes compared to the baseline. The changes are, however, positive. This is what one would expect since the U.S. holds, at least initially, a major share -16.7 percent to be precise - of the world's capital stock. Notwithstanding the major expansion of the economy, eliminating corporate taxation does not pay for itself. This can be seen in table A16. Both the 2014 proportional consumption and average income tax rates rise, albeit modestly, to balance the budget.

Figure 3 presents welfare gains from the reform.²¹ These are measured as the compensating percentage increase in each cohort's post-2014 lifetime consumption and leisure needed to achieve the level of remaining or full lifetime utility generated by the reform in question. Eliminating all corporate income taxation is a win-win for US residents. All US agents are better off: the policy represents a Pareto improvement with those born in the future benefiting relatively more than earlier cohorts and with the unskilled experiencing a higher welfare gain than the skilled. The reform has a slightly negative impact on world welfare as a whole excluding the US 5. Across the world, US corporate tax elimination reduces welfare by 0 to 2% depending on the region and birth cohort (region, birth-cohort and skill-group specific welfare under each scenario are reported in figures A6 through A13).

The reason that scenarios entailing a decrease in GDP are sometimes better in terms of welfare (and vice versa) is that income effects dominate substitution effects in determining household laborsupply responses to changes in real wage rates. Therefore, our finding of a strong supply response to U.S. corporate tax reform or cuts is pre-ordained neither by our model's construction nor its parameterization. To the contrary, the model's income effects are far more powerful than its substitution (incentive) effects. This means that cuts in our model's labor-income tax rates would lead to less, not more aggregate labor supply and generate less, not more tax revenues. Similarly, simulating personal asset-income tax cuts in our model would reduce, not increase personal saving and reduce,

²¹See table A14 for specific rates by birth cohort.

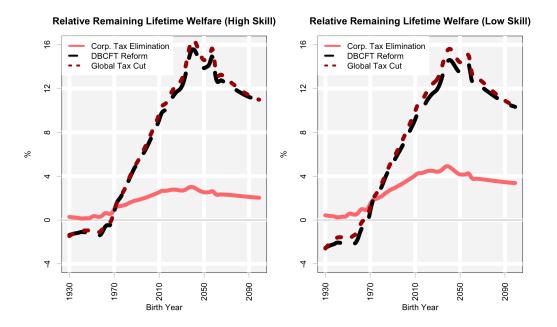


Figure 3: U.S. Percentage Welfare Increase from Reforms by Birth Cohort

Figure 4: Welfare Increase from Reforms by Birth Cohort for the World Including or Excluding the US



Figure 5: Welfare changes for a skill group are averages across 16 or 17 regions, weighted by GDP.

not increase tax revenues.

Why, then, do both corporate tax elimination or reform create a very strong supply-side response? The first answer is the highly elastic global supply of capital, which moves across borders at the first sign of a tax advantage. The second answer is the significant inefficiency associated with the U.S. corporate income tax, which, as of 2017, had a very high marginal, but very low average tax rate.

5.3. Simulating BCFT Reform

Next consider a BCFT reform.²² This reform eliminates the federal METR, reducing the total U.S. METR from 34.6 percent to 16.1 percent. In implementing the reform, we also reduce corporate tax rebates by 80 percent. This reflects the fact that federal corporate tax loopholes are more important than state corporate tax loopholes.

In simulating the BCFT reform, we replace the corporate tax with a consumption tax and a wage subsidy. We do so to account for the plan's VAT plus wage subsidy business tax structure. The consumption tax rate is set 15 percentage points above its baseline 2014 level.²³ Since the baseline 2014 consumption tax rate is 18.1 percent (largely from state level taxes), raising it by 15 percentage points produces a 33.1 percent consumption tax. We hold this tax rate fixed through time in the simulation, letting the income tax rate adjust to balance the budget. We also include a permanent wage subsidy of 11.9 percent. The combination of the 15 percent consumption tax and the 11.9 percent wage subsidy produces 2014 net revenues equal to 2014 baseline corporate tax revenues. Choosing the wage subsidy rate in this manner is consistent with our assumption that the BCFT reform is revenue neutral.

As with the complete elimination of corporate taxation, BCFT reform produces a major and rapid increase in GDP – almost 8 percent by the end of a decade (see figure 2 and table A11). By mid-century the increase is 5 percent relative to the baseline value. However, in the long run, GDP is actually lower than along its baseline path. The reason is the reduction in labor supply by both skill groups induced by the policy's higher real wages. In contrast, the (exclusive of the U.S.) world average GDP increases by 1 percent by 2040.

BCFT reform raises GDP through a massive influx of capital. It raises the U.S. capital stock in the first year of the reform by 17.9 percent. And the increase is even larger through at least 2060 (see table A12). The peak increase is 24.92 percent in 2014. The policy induces a short-run rise in labor supply (see table A15), but overtime the labor supply drops significantly. Indeed, by 2100, the unskilled and skilled are supplying 7.43 percent and 11.60 percent less labor, respectively. The reason is the decline over time in income tax rates. This is associated with a major increase in

²²The specific implementation of business cash flow taxation we focus on was the one proposed in the June 2016 "Better Way" tax reform plan. The plan calls for major changes to business and personal taxation. This paper's focus is on the plan's business tax reform.On the personal level, the plan reduces the number of personal income tax brackets from 7 to 3 and lowers the top income-tax rate from 39.6 percent to 33 percent. It eliminates exemptions, the Alternative Minimum Tax, and the deductibility of state income and property taxes. It increases both the standard deduction and modifies the child tax credit. We do not model these changes. The business tax reform replaces the U.S. federal corporate income tax with a 20 percent business cash flow tax (BCFT), which permits immediate expensing of new investment and deductibility of wages, but precludes deductibility of net interest. Eliminating deductibility of net interest would likely have other benefits, including dramatically lowering corporate leverage, eliminating the distortion in favor of corporate borrowing, and improving business-sector financial stability. The present value benefit from immediate expensing fully offsets the present value of taxes levied on the cash flows from net investment. This makes the BCFT's METR zero. Pass-through business entities would face a top rate of 25 percent, which raises major concerns, not addressed here, of reclassifying personal income that would otherwise be taxed at a rate above 25 percent, as pass-through business income.

²³The specific BCFT proposal we evaluate calls for a 20 percent BCFT rate, but roughly one quarter of U.S. consumption, primarily imputed rent on owner-occupied housing, would be exempt from the tax.

consumption tax revenues driven by the aging of the U.S. population.²⁴ While moving to BCFT is revenue neutral in the short term, over the next few decades it increases revenue due to this expansion of the consumption tax base.

As figure 3 and table A14 shows, the BCFT reform produces far larger welfare gains for current US young and future generations than the corporate tax elimination simulation. The reason is that older initial generations experience welfare losses as a result of the reform's shift toward consumption taxation and away from labor-income taxation. The generation born in 1935, who are 83 in 2014, experience welfare losses of 2.3 percent and 1.2 percent in the case of low- and high-skilled workers. Their counterparts born in 2100 experience welfare gains of 10.3 percent and 10.9 percent. Foreigners are largely indifferent between the two US policies (figure 5), but because BCFT reform is so much better for the US, the world as a whole is much better off under the US BCFT reform.

5.4. Simulating a Global Corporate Tax Race to the Bottom

Our final policy simulation considers the consequences if the rest of the world match the the US BCFT's elimination and replacement of the federal corporate tax. This constitutes a 53.5% corporate tax cut for all regions in the world. We assume non-US regions finance these cuts by increasing income and consumption/VAT taxes to maintain the same share of revenue generated by each.

Global-tax matching entails a significantly smaller increase to U.S. GDP and its capital stock. For example, in 2014, these variables are only 3.80 percent and 4.80 percent above their baseline values. This reduced impact holds for all future years as well. Take 2080. US GDP is actually 4.76 percent lower than the corresponding baseline value. Foreign countries suffer less capital flight under this scenario, and, commensurately, smaller reductions in GDP. In the short run, World GDP excluding the US is at about baseline levels, but in 2050 it is over 5% larger. Brazil, which has an especially high corporate tax rate, sees an increase in GDP above baseline of over 10 percent in the second half of the Century. GDP percentage changes above/below baseline by region are summarized in figures A2, A3, A4, A5)

Surprisingly, the welfare consequences for the US from from global tax-matching are (vs. only the US undertaking tax reform), according to figure 3, quite small. The reason is that the policy's major shift toward consumption taxation continues to produce a significant redistribution away from initial older generations, who experience higher lifetime remaining tax burdens, to young and future generations. Although U.S. wage rates rise by less due to the global race to the bottom (see table A13), the world interest rate is higher thanks to the reduction in foreign-region METRs. This benefits U.S. households whether they invest at home or abroad. Americans own a disproportionate share of world assets through the end of the Century and benefit from lower global corporate taxes. Higher asset incomes, especially as a percentage of GDP, also allow for further reductions in income tax rates. On net, the welfare hit from a lower wage in the US roughly balances the gain from a higher rate of return on assets.

For the rest of the world, the story is analogous but reversed. As figure 5 displays, a global race to the bottom in corporate tax rates in response to a US BCFT reform would not much impact average welfare in the rest of the world, particularly in the long run. This is because while the rest of the world benefits from a higher capital stock and wage, this is offset by the loss of corporate tax income paid by disproportionately American asset holders. To the extent that a race to the bottom does impact average lifetime welfare for foreign countries, it is to slightly hurt older generations, who must pay higher consumption taxes but do not benefit from higher wages.

That being said, there is dramatic heterogeneity across countries in terms of who benefits from the global corporate tax cut. The welfare winners from a race to the bottom are rich countries

²⁴Note that the propensity to consume rises with age in this and all other life-cycle models.

with high initial corporate tax rates: the US and JKSH (a region constituting Japan, South Korea, Singapore and Hong Kong) especially. Despite being poorer initially, Brazil also benefits due to its very high corporate tax rate. Regions that suffer most from this event are poorer and already have low corporate tax rates. Eastern Europe, Russia, South Africa, and the Middle East and North Africa are examples (figures A6 through A13).

6. Conclusion

This paper uses a 17-region computable general equilibrium model to simulate a baseline and three hypothetical tax reform scenarios. The model is closely calibrated to U.N. reported demographics, both current and projected, and to IMF measures of fiscal aggregates. The model's baseline transition path shows a global economy that slowly but surely catches up to the U.S.. This catch-up growth coupled with demographic changes produces a very different regional distribution of world output at the end of the century than now prevails.

The specific BCFT reform considered is the House Republican "Better Way" tax plan. This plan is very similar to that proposed by tax reform commissions as well as many academic economists and tax specialists. In our simulations, BCFT reform raises real wages by roughly 6 percent in the short run and over 8 percent thereafter. The reason is the induced inflow of capital. The model produces a roughly 18 to 25 percent higher level of US domestic capital for the next half century. This is associated with a 2 to 8 percent higher level of GDP over the same period.

The implications of the U.S. moving, on its own, to a BCFT come largely at the expense of other regions, whose capital stocks, GDPs, and real wages fall relative to the no-reform baseline path. As we show, these economic impacts are considerably smaller if other regions implement the same percentage reduction in their METRs in response to the U.S. reform. But even with a global tax cut in response, the simulations suggest a major improvement in the U.S. economy due to the fact that the absolute U.S. METR falls by a larger amount than occurs in other regions.

We also simulate the elimination not just of the federal component of the U.S. METR, but the state component as well. This produces far larger increases in GDP, capital stocks, and wage rates, particularly for low-skilled workers. The difference between this policy's outcomes and those arising from the House tax plan revolve around the inclusion, in the House tax plan, of a VAT plus a wage subsidy. This adds an extra consumption tax to the model, which is levied primarily on owners of wealth. Its revenues, particularly toward the end of the century, permit major reductions in the personal income tax rate. This, in turn, differentially benefits high-skilled workers, who take more leisure than the unskilled and collectively raise their relative wages.

For the rest of the world, either US corporate tax reform has small negative effects on average, lowering welfare by less than one percent for most cohorts, without much variation among countries. If the world were to respond, in a "race to the bottom" with a matching global tax cut, this would have a relatively small impact on both US and global average welfare. This is because, in effect, the average increase in non-US wages created by the global corporate tax cut is roughly offset by the reduction in revenues from US citizens investing abroad. However, there is a large spread across regions in the global impact of such a global tax cut. Rich countries with high initial corporate tax rates do very well (Japan, South Korea, Hong Kong and Singapore for example) while poorer countries with low initial corporate tax rates do poorly (especially Eastern Europe).

Like all models, ours abstracts from some realities. First, to limit computational complexity, the model features no capital adjustment costs. The large initial increase in U.S. capital stocks that we project immediately following the reform would likely take several years to manifest were such adjustment costs taken into account.

Our model also takes a very simplified approach to considering inequality. We model just two income groups – low- and high-skilled workers. This said, our results suggest that BCFT reform would

have little impact on wage inequality with a more realistic number of skill groups. A third limitation is the assumption that capital is a complement to workers of both types. A growing literature on skill-biased technological change suggests that certain forms of capital can substitute for routine labor. Such an effect might materially alter our findings on the impact of BCFT on intragenerational equality.

Finally, our model also features only one good. We conjecture that adding additional traded as well as non-traded goods would have little impact on our findings provided each country can produce each of the traded goods or that the traded goods are close substitutes. But this remains to be demonstrated.

References

- SM Ali Abbas and Alexander Klemm. A partial race to the bottom: corporate tax developments in emerging and developing economies. *International Tax and Public Finance*, 20(4):596–617, 2013.
- David Altig, Alan J Auerbach, Laurence J Kotlikoff, Kent A Smetters, and Jan Walliser. Simulating Fundamental Tax Reform in the United States. American Economic Review, pages 574–595, 2001.
- William D Andrews. A Consumption-Type or Cash Flow Personal Income Tax. Harvard Law Review, pages 1113–1188, 1974.
- Alan J Auerbach. A Modern Corporate Tax. Center for American Progress, 2010.
- Alan J Auerbach and William G Gale. The Fiscal Outlook at the Beginning of the Trump Administration. Brookings Institution, January, 31, 2017.
- Alan J Auerbach and Laurence J Kotlikoff. National Savings, Economic Welfare, and the Structure of Taxation. In *Behavioral Simulation Methods in Tax Policy Analysis*, pages 459–498. University of Chicago Press, 1983.
- Alan J Auerbach and Laurence J Kotlikoff. Dynamic Fiscal Policy, volume 11. Cambridge University Press Cambridge, 1987.
- Alan J Auerbach, Michael P Devereux, Michael Keen, and John Vella. Destination-Based Cash Flow Taxation. January 2017a.
- Alan J. Auerbach, Laurence Kotlikoff, and Darryl Koehler. Assessing the House Republican Tax Reform Plan. May 2017b.
- Seth G Benzell and Guillermo Lagarda. Can russia survive economic sanctions? Asian Economic Papers, 16 (3):78–120, 2017.
- Seth G Benzell, Eugene Goryunov, Maria Kazakova, Laurence J Kotlikoff, Guillermo LaGarda, Kristina Nesterova, and Andrey Zubarev. Simulating Russia's and Other Large Economies' Challenging and Interconnected Transitionsl. National Bureau of Economic Research Working Paper, 2015.
- Seth G. Benzell, Maria. Kazakova, Laurence J. Kotlikoff, Guillermo. LaGarda, Kristina. Nesterova, Andrey. Polbin, Marco. Solera, Yifan. Ye, and Andrey Zubarev. Simulating Russian Tax Reform in the Global Gaidar Model. The Gaidar Institute mimeo, 2018.
- David Bradford. Untangling the Income Tax. Harvard University Press, 1986.
- David F. Bradford. The Incidence and Allocation Effects of a Tax on Corporate Distributions. Journal of Public Economics, 15(1):1–22, 1981.
- Jesse Bricker, Lisa Dettling, Alice Henriques, Joanne Hsu, Kevin Moore, John Sabelhaus, Jeffrey Thompson, and Richard Windle. Changes in U.S. Family Finances from 2010 to 2013: Evidence from the Survey of Consumer Finances. *Federal Reserve Bulletin*, 100(4), Sep 2014.
- Gerhard Colm and Henry C Simons. Personal Income Taxation. The Definition of Income as a Problem of Fiscal Policy, 1938.
- Credit Suisse. Credit Suisse Global Wealth Report. Credit Swiss, 2017. URL https://www.credit-suisse. com/corporate/en/research/research-institute/global-wealth-report.html.
- Michael P Devereux, Rachel Griffith, and Alexander Klemm. Corporate income tax reforms and international tax competition. *Economic policy*, 17(35):449–495, 2002.
- Dhammika Dharmapala. What do we know about base erosion and profit shifting? a review of the empirical literature. *Fiscal Studies*, 35(4):421–448, 2014.

- Simeon Djankov, Tim Ganser, Caralee McLiesh, Rita Ramalho, and Andrei Shleifer. The effect of corporate taxes on investment and entrepreneurship. *American Economic Journal: Macroeconomics*, 2(3):31–64, 2010.
- Hans Fehr, Sabine Jokisch, and Laurence Kotlikoff. The Developed World's Demographic Transition The Roles of Capital Flows, Immigration, and Policy. (10096), November 2003.
- Hans Fehr, Sabine Jokisch, Ashwin Kambhampati, and Laurence J Kotlikoff. Simulating the Elimination of the U.S. Corporate Income Tax. 2013.
- Don Fullerton and Diane Lim Rogers. Lifetime Effects of Fundamental Tax Reform. Economic Effects of Fundamental Tax Reform, pages 321–354, 1996.
- Don Fullerton, A Thomas King, John B Shoven, and John Whalley. Corporate Tax Integration in the United States: A General Equilibrium Approach. *The American Economic Review*, 71(4):677–691, 1981.
- Jane Gravelle and Kent Smetters. Who Bears the Burden of the Corporate Tax in the Open Economy? National Bureau of Economic Research, 2001.
- Harry Grubert and Rosanne Altshuler. Shifting the Burden of Taxation from the Corporate to the Personal Level and Getting the Corporate Tax Rate Down to 15 Percent. *ECONSTOR Working Paper*, 2016.
- Christian Hagist, Laurence Kotlikoff, et al. Who is Going Broke? Comparing Growth in Public Healthcare Expenditure in Ten OECD Countries. *Hacienda Publica Espanola/Revista de Economia Publica*, 188(1): 55–72, 2009.
- Robert M Haig. The Concept of Income—Economic and Legal Aspects of The Federal Income Tax. Columbia Press, 1921.
- Arnold Harberger. The ABC's of Corporate Tax Incidence: Insights Into the Open Economy Case. In Tax Policy and Economic Growth. American Council for Capital Formation, 1995.
- Arnold C Harberger. The Incidence of the Corporation Income Tax. *Journal of Political Economy*, 70(3): 215–240, 1962.
- Kevin A Hassett and Aparna Mathur. Spatial Tax Competition and Domestic Wages. 2010.
- R Glenn Hubbard, Kenneth L Judd, Robert E Hall, and Lawrence Summers. Liquidity Constraints, Fiscal policy, and Consumption. *Brookings Papers on Economic Activity*, 1986(1):1–59, 1986.
- IGM Forum. Local Tax Incentives: Poll of Economists. 2016. URL http://www.igmchicago.org/surveys/ local-tax-incentives-2/.
- International Monetary Fund. Government Finance Statistics. IMF, 2014.
- International Monetary Fund. IMF World Economic Outlook Database. IMF, 2016.
- Laurence J Kotlikoff, Kent Smetters, and Jan Walliser. Mitigating America's Demographic Dilemma by Pre-Funding Social Security. Journal of Monetary Economics, 54(2):247–266, 2007.
- Jack Mintz and Philip Bazel. Competitiveness Impact of Tax Reform for the United States. April 2017.
- Eric Ohrn. The effect of corporate taxation on investment and financial policy: evidence from the dpad. American Economic Journal: Economic Policy, 10(2):272–301, 2018.
- Alvin Rabushka and R Hall. The Flat Tax. B & H Communications, 1985.
- Paul Ryan et al. A better way: Our vision for a confident america. White Paper, July, 22, 2016.
- Jeffrey Sachs. Stop this race to the bottom on corporate tax. Financial Times, 28, 2011.
- Georg Schanz. Der Einkommensbegriff Und Die Einkommensteuergesetze. FinanzArchiv/ Public Finance Analysis, 13(H. 1):1–87, 1896.
- Laurence S Seidman. Conversion to a Consumption tax: The Transition in a Life-Cycle Growth Model. Journal of Political Economy, 92(2):247–267, 1984.
- Laurence S Seidman. A Progressive Consumption Tax. Challenge, 40(6):63-84, 1997.
- John B Shoven and John Whalley. A General Equilibrium Calculation of the Effects of Differential Taxation of Income from Capital in the U.S. *Journal of Public Economics*, 1(3-4):281–321, 1972.
- James Simon. The Report of the Meade Committee. Accounting and Business Research, 9(33):35–44, 1978. doi: 10.1080/00014788.1978.9729134. URL http://dx.doi.org/10.1080/00014788.1978.9729134.
- Lawrence H Summers. Capital Taxation and Accumulation in a Life Cycle Growth Model. The American Economic Review, 71(4):533–544, 1981.
- The World Bank. Fossil Fuel Rents, 2014. Data Retrieved from World Development Indicators, http://data.worldbank.org/indicator.
- Eric Toder and Alan D Viard. Replacing Corporate Tax Revenues with a Mark-to-Market Tax on Shareholder

Income. National Tax Journal, 69(3):701, 2016.

- Trading Economics. Retirement Age Men. *TradingEconomics*, 2017. URL https://tradingeconomics.com/ country-list/retirement-age-men.
- United Nations. World Fertility Prospects. UN, 2016a. URL https://esa.un.org/unpd/wpp/.

United Nations. World Migration Prospects. UN, 2016b. URL https://esa.un.org/unpd/wpp/.

United Nations. World Mortality Prospects. UN, 2016c. URL https://esa.un.org/unpd/wpp/.

United Nations. World Population Prospects. UN, 2016d.

- U.S. Department of the Treasury. Blueprints for Basic Tax Reform. US Government Printing Office, 1977.
- U.S. Department of the Treasury. Simple, Fair, and Pro-Growth: Proposals to Fix America's Tax System; Report of the President's Advisory Panel on Federal Tax Reform. 2005.
- World Bank. Pensions and Social Security. *World Bank*, 2016a. URL http://www.worldbank.org/en/topic/pensions.
- World Bank. World Development Indicator Database. *World Bank*, 2016b. URL http://data.worldbank. org/data-catalog/world-development-indicators.

Appendix

Appendix .1. Prior Simulation Studies

Work on the corporate income tax's economic impact and incidence traces to Harberger (1962). Harberger's seminal study prompted Shoven and Whalley (1972) – the first large-scale, albeit static, closed-economy simulation study of corporate tax reform and similar, but more detailed simulation studies, such as Fullerton et al. (1981). Bradford (1981) and Harberger (1995) are early theoretical analyses of corporate taxation in an international setting. Their work prompted simulation analysis. Gravelle and Smetters (2001) is one of the first such studies. The authors include two regions – the U.S. and the rest of the world – each of which specializes in the production of one of two traded goods. These assumptions plus the inclusion of non-traded goods strongly limit the degree to which capital shifts abroad in response to a higher domestic METR. But assuming complete specialization appears unrealistic given that virtually identical traded goods are being made in multiple countries. Indeed, many "foreign" goods are now produced domestically. Take Toyota and Volkswagon – the two largest car producers in the U.S.

Economists and other students of taxation have also long studied cash-flow consumption taxation. Schanz (1896), Haig (1921), and Colm and Simons (1938) clarified our ability to measure consumption as cash flow, specifically as income less investment (or saving). Andrews (1974) rekindled interest in cash-flow consumption taxation. His work spurred two official inquiries. *Blueprints for Basic Tax Reform* (U.S. Department of the Treasury (1977)) was conducted under the direction of Princeton economist and then Deputy Assistant Secretary of the Treasury, David Bradford. The second was the Meade Commission Report (Simon (1978)) directed by Nobel Laureate, James Meade. Progressive personal consumption taxation, via cash flow measurement, was proposed by Seidman (1997) under the heading *USA TAX*, by Rabushka and Hall (1985) under the heading *The Flat Tax*, and by Bradford (1986) under the heading *The X Tax*. The former two reform plans combine proportional business cash-flow taxation with progressive personal wage taxation.²⁵ More recent proposals for cash-flow consumption taxation include *The Growth and Investment Tax Plan*, developed by the 2005 President's Advisory Panel on Federal Tax Reform (U.S. Department of the Treasury (2005)), Auerbach (2010)'s *Modern Corporate Tax*, and Toder and Viard (2016)'s *A Proposal to Reform the Taxation of Corporate Income.*²⁶

Early dynamic simulation studies of consumption-tax reforms include Summers (1981), who assumed myopic expectations, Auerbach and Kotlikoff (1983) and Auerbach and Kotlikoff (1987), who considered rational expectations, Seidman (1984), who focused on bequest behavior, Hubbard et al. (1986), who incorporated liquidity constraints, Fullerton and Rogers (1996), who considered a highly detailed, multi-good, multi-skill group framework, and Altig et al. (2001), who incorporated multiple lifetime earnings groups, kinked budget constraints, and other realistic details. These closed-economy studies showed how a switch from income to consumption taxation would impact the economy and different generations through time.

It took a number of years to develop multi-country/multi-region life-cycle simulation models carefully calibrated to demographic and fiscal aggregates and in which agents have realistic lifespans. Fehr et al. (2003), which features 3 large countries/regions, is an early example. Subsequent versions of this model by these three co-authors and others led to Fehr et al. (2013) – the closest antecedent to this paper. That paper's model features six large regions (the U.S., the EU, Russia, China, Japan plus S. Korea, and India) and simulates the complete elimination of the U.S. corporate income tax.

²⁵The Rabushka and Hall (1985) tax introduced progressivity by exempting low earners from its personal wage tax.

 $^{^{26}}$ Grubert and Altshuler (2016) is another recent major study of tax reform, but its focus is primarily on reforming corporate taxation of foreign-based profits.

Fehr et al. (2013) includes many of the features of our model. It also shows that either eliminating or substantially reducing the U.S. corporate income tax rate can produce rapid and dramatic increases in U.S. domestic investment, output, real wages, and national saving. Over time, these improvements expand the tax base, which helps fund the corporate tax's reduction.

The model used in this paper is called the Global Gaidar Model, or GGM. The model used in this study was co-developed by the authors together with Maria Kazakova, Kristina Nesterova, and Andrey Zubarev of the Gaidar Institute and Marco Solera of the Inter-American Development Bank. There are five main differences between the GGM and Fehr et al. (2013). First, the GGM covers the global economy, with the latest versions including 12 additional large regions. Incorporating the global capital market is crucial for assessing precisely how much foreign investment will flow into the U.S. in response to corporate tax reform. Second, the GGM contains an energy sector as in Benzell et al. (2015). Third, the GGM is calibrated based on the latest U.N. demographic and IMF fiscal data. Fourth, the GGM is designed to start from any position of the global economy, i.e., it does not derive its initial conditions from the calculation of an initial steady state. Fifth, the GGM permits mortality to occur at all ages, not just starting at 67.

Appendix .2. Calibrating the Model

As table A1 shows, our model's region-specific 2100 total population counts match the U.N.'s projections very well in general and extremely well in particular cases. For example, the model predicts the U.S. population at 446.1 million at the end of the century, which is within 1 percent of the U.N. projection of 447.6 million. Another example is China. The model predicts China's 2100 population at 978.9 million. This is within 3 percent of the U.N.'s 1003.0 million estimate. The largest year-2100 population-projection discrepancies – both 6.2 percent – are those for the Middle East and North Africa (MENA) and the South Asia Pacific.

In reporting the model's region- and year-specific fertility rates, we double the model's rates for comparability with real-world projected rates. The fertility rate is defined by the U.N. as births per woman of child-bearing age.

Table A2 compares the model's projected fertility rates with those of the U.N. for 2100. Again, we see a reasonably close correspondence between the model's and the U.N.'s projections. The U.N. puts the U.S. fertility rate at 1.89 children per woman of child-bearing age in 2014, rising to 1.93 in 2100. These values are both within 9 percent of the model's rates of 2.04 in 2014 and 2.12 in 2100. Another example of a good fit is the case of Canada for which the model's fertility rates for 2014 and 2100 are within 2 percent of official numbers. The worst fit is for the Eastern European Union (EEU). The U.N. puts that region's fertility rate at 1.54 in 2014 and 1.83 in 2100. The model's rates are 1.03 and 1.98, respectively. These discrepancies notwithstanding, the model tracks the EEU's total population and age structure through 2100 quite well.

Table A3 compares projected and modeled population age structures for 2014 and 2100. Because the 2014 U.N. population counts by age are part of the model's initial conditions, the model's 2014 age structure conforms exactly to the data. What's remarkable is how well, generally speaking, the model tracks regional age structures through time. For the U.S, the UN predicts 11.3 percent of the population will be between the ages of 20 and 29 in 2100, with 21.7 percent between the ages of 70 and 90. The model's shares are 10.9 percent and 21.8 percent, respectively. Another example is SLA, which groups Latin and Central America nations excepting Mexico and Brazil. In 2100, the U.N. SLA population shares at ages 20-29 and 70-90 are 10.6 percent and 23.6, respectively. The corresponding model's shares are 10.5 percent and 23.2 percent.

Table A4 considers the match between the IMF and the GGM measures of 2014 macro indicators. The GGM does an excellent job matching region-specific relative GDPs, ratios of private and

Appendix Table A1:	U.N. and G	GM Population	Projections
--------------------	------------	---------------	-------------

							т	otal Popu	ilation (n	illions)									
	US	5A	W	EU	JKSH		CHI		IN	IND		RUS		5 BRA		GBR		CAN	
	2014	2100	2014	2100	2014	2100	2014	2100	2014	2100	2014	2100	2014	2100	2014	2100	2014	2100	
Model Official	$317.5 \\ 317.5$	$\begin{array}{c} 446.1\\ 447.6\end{array}$	$594.1 \\ 594.1$	$576.9 \\ 581.6$	188.0 188.0	$135.8 \\ 134.0$	$1367.6 \\ 1367.6$	978.9 1003.0	1294.3 1294.3	$1614.1 \\ 1658.5$	$143.1 \\ 143.1$	$112.3 \\ 117.2$	205.8 205.8	$195.5 \\ 200.0$	63.8 63.8	81.8 81.7	63.3 63.3	96.0 97.6	
	EF	EU	MF	NA	M	EX	SA	4F	SA	ΔP	SI	LA	so	ov	S	SA			
	2014	2100	2014	2100	2014	2100	2014	2100	2014	2100	2014	2100	2014	2100	2014	2100			
Model Official	84.8 84.8	48.9 49.7	726.8 726.8	1398.9 1491.4	125.1 125.1	142.8 148.1	53.9 53.9	67.2 65.7	820.3 820.3	903.1 963.5	278.9 278.9	362.2 360.5	82.8 82.8	108.2 106.5	723.1 723.1	3424.5 3272.9			

Appendix Table A2: U.N. and GGM Fertility Rates

						U	N Fertil	ity Rate	(Childr	en per V	Voman)							
	US	5A	WEU JKSH		C	CHI IND				RUS BRA			GBR		CAN			
	2014	2100	2014	2100	2014	2100	2014	2100	2014	2100	2014	2100	2014	2100	2014	2100	2014	2100
Model	2.04	2.12	1.55	1.78	1.42	1.50	1.68	1.73	2.85	1.68	1.53	1.69	1.98	1.81	1.89	1.86	1.85	1.79
Official	1.89	1.93	1.65	1.84	1.30	1.69	1.55	1.81	2.48	1.80	1.66	1.91	1.82	1.79	1.92	1.89	1.86	1.81
	EF	EU	ME	NA	M	EX	SA	4F	SA	ΔP	SI	A	sc	v	SS	5A		
	2014	2100	2014	2100	2014	2100	2014	2100	2014	2100	2014	2100	2014	2100	2014	2100		
Model	1.03	1.98	4.00	1.74	2.15	1.95	2.30	1.96	2.55	2.01	2.50	2.03	2.71	1.93	5.24	2.16		
Official	1.54	1.83	3.25	1.82	2.29	1.79	2.40	1.80	2.51	1.83	2.37	1.82	2.60	1.89	4.93	2.09		

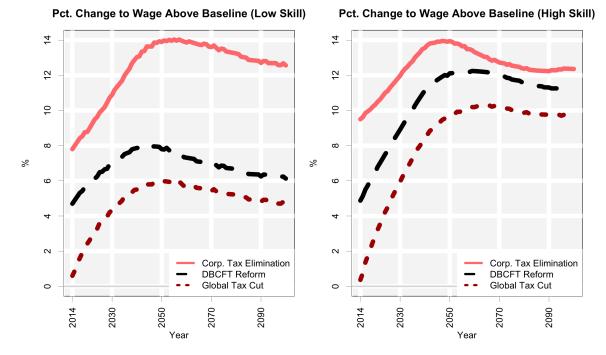
							Mode	l Age St	ructure	(% of To	tal Pop	ulation)								
		U	SA	W	EU	JK	ян	С	ні	IN	IND		RUS		S BRA		GBR		CAN	
		2014	2100	2014	2100	2014	2100	2014	2100	2014	2100	2014	2100	2014	2100	2014	2100	2014	2100	
0-9	Model	12.7	11.6	11.5	9.9	8.7	9.1	11.7	8.5	19.5	9.2	11.7	11.6	15.0	9.5	12.4	9.0	11.8	9.7	
	Official	12.7	10.8	11.5	9.7	8.7	8.2	11.7	8.8	19.5	9.7	11.7	11.2	15.0	9.1	12.4	10.1	11.8	9.8	
10-19	Model	13.1	11.7	11.5	10.1	10.1	9.0	11.6	9.7	19.2	10.0	9.3	11.6	17.0	9.5	11.5	9.7	11.9	10.3	
	Official	13.1	11.0	11.5	10.0	10.1	8.6	11.6	9.4	19.2	10.2	9.3	11.8	17.0	9.5	11.5	10.4	11.9	10.2	
20-29	Model	14.1	10.9	12.8	10.5	11.5	9.0	17.5	9.2	17.7	10.7	15.7	11.8	16.7	10.0	13.6	10.9	14.2	10.5	
	Official	14.1	11.3	12.8	10.4	11.5	9.1	17.5	9.9	17.7	10.7	15.7	12.2	16.7	9.9	13.6	10.8	14.2	10.5	
30 - 39	Model	13.0	11.6	13.9	11.3	13.8	10.1	14.2	9.7	14.8	11.4	15.5	12.0	16.3	10.0	13.0	11.0	13.6	11.2	
	Official	13.0	11.4	13.9	10.7	13.8	9.9	14.2	10.0	14.8	11.2	15.5	11.8	16.3	10.4	13.0	10.9	13.6	10.9	
40-49	Model	13.2	11.1	14.5	11.1	15.2	9.8	17.8	10.4	11.5	11.9	13.0	12.6	13.2	10.5	14.3	11.9	13.7	11.2	
	Official	13.2	11.5	14.5	11.1	15.2	10.4	17.8	10.7	11.5	11.9	13.0	12.5	13.2	10.9	14.3	11.3	13.7	11.3	
50-59	Model	14.1	10.7	13.4	11.7	13.4	10.4	12.7	11.2	8.7	12.2	15.4	12.9	10.6	11.7	13.0	12.0	14.2	11.6	
	Official	14.1	11.3	13.4	11.5	13.4	10.9	12.7	11.6	8.7	12.3	15.4	12.9	10.6	11.4	13.0	11.4	14.2	11.3	
60-69	Model	10.7	10.5	10.9	11.1	12.9	11.0	9.0	11.7	5.3	12.2	10.2	10.4	6.5	12.0	11.1	11.7	10.9	10.4	
	Official	10.7	10.9	10.9	11.2	12.9	11.6	9.0	11.6	5.3	12.4	10.2	10.8	6.5	11.9	11.1	10.9	10.9	11.0	
70-90	Model	9.0	21.8	11.6	24.9	14.4	30.5	5.6	29.7	3.3	22.4	9.2	17.1	4.7	26.0	11.2	23.8	9.7	25.2	
	Official	9.0	21.7	11.6	25.4	14.4	31.3	5.6	28.0	3.3	21.7	9.2	16.8	4.7	27.0	11.2	24.2	9.7	25.1	

Appendix	Table A3:	U.N. and	GGM A	Age Distri	butions
----------	-----------	----------	-------	------------	---------

		EI	EU	ME	NA	M	$\mathbf{E}\mathbf{X}$	SA	٩F	SA	ΔP	SI	LA	so	ov	SS	5A
		2014	2100	2014	2100	2014	2100	2014	2100	2014	2100	2014	2100	2014	2100	2014	2100
)-9	Model	10.7	9.9	23.9	10.7	18.6	8.2	20.2	10.7	18.4	13.0	18.6	9.6	19.8	12.6	31.6	16.7
	Official	10.7	9.6	23.9	10.1	18.6	8.9	20.2	10.9	18.4	9.9	18.6	9.8	19.8	10.9	31.6	14.1
10-19	Model	10.0	10.0	19.8	11.0	19.0	9.6	19.2	11.9	18.3	10.1	18.3	10.1	16.3	11.1	23.0	15.0
	Official	10.0	10.3	19.8	10.6	19.0	9.3	19.2	11.4	18.3	10.3	18.3	10.3	16.3	11.5	23.0	14.2
20-29	Model	14.8	10.1	18.5	11.6	17.3	10.1	19.6	12.1	17.1	8.9	17.3	10.5	19.6	11.3	16.8	13.8
	Official	14.8	10.6	18.5	11.3	17.3	9.7	19.6	12.0	17.1	10.7	17.3	10.6	19.6	11.8	16.8	14.0
30-39	Model	14.9	10.3	14.6	12.1	15.2	10.4	14.6	12.3	15.5	9.1	14.6	10.8	14.5	10.8	11.8	13.5
	Official	14.9	10.5	14.6	11.9	15.2	10.1	14.6	12.4	15.5	11.0	14.6	10.8	14.5	11.6	11.8	13.6
40-49	Model	13.5	11.5	9.9	12.7	12.4	10.7	10.9	12.8	12.8	9.5	11.7	11.9	11.6	12.2	7.5	12.5
	Official	13.5	11.4	9.9	12.2	12.4	10.8	10.9	12.7	12.8	11.4	11.7	11.4	11.6	12.0	7.5	12.8
50-59	Model	14.6	12.2	6.8	12.8	8.4	11.3	8.0	12.4	9.3	11.2	9.1	12.2	9.9	11.4	4.8	11.9
	Official	14.6	12.1	6.8	12.4	8.4	11.4	8.0	12.7	9.3	12.1	9.1	11.8	9.9	12.5	4.8	11.5
60-69	Model	10.9	11.8	3.9	11.3	5.1	11.7	4.4	11.9	5.1	11.3	5.9	11.8	4.6	10.3	2.9	9.2
	Official	10.9	11.5	3.9	11.5	5.1	12.0	4.4	11.8	5.1	12.2	5.9	11.8	4.6	10.9	2.9	9.6
70-90	Model	10.6	24.2	2.6	18.0	4.0	28.0	3.2	16.0	3.5	27.0	4.7	23.2	3.7	19.3	1.7	7.7
	Official	10.6	24.0	2.6	19.9	4.0	27.8	3.2	16.0	3.5	22.4	4.7	23.6	3.7	18.9	1.7	10.2

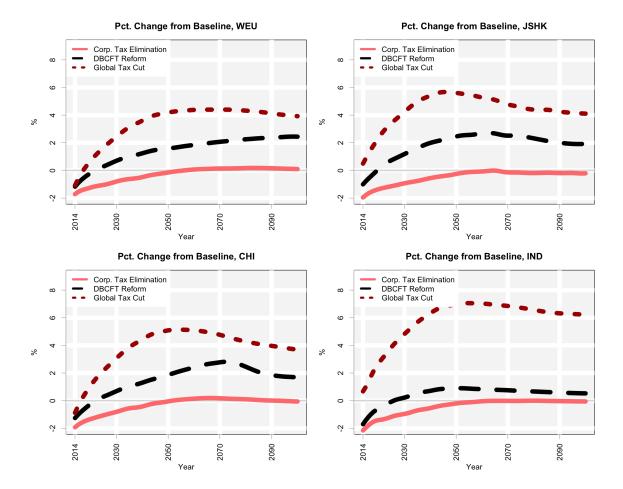
government consumption to GDP, shares of world assets,²⁷ and fossil-fuel rents as shares of GDP. Table A5 shows the precision of our government fiscal policy calibration. Aggregate macroeconomic variables, such as relative GDPs, fossil fuel profits as a percent of GDP, and shares of world assets are also calibrated. Our calibration strategy entails targeting IMF-observed region-specific expenditure shares and letting the GGM's tax rates adjust accordingly. Table A5 shows a tight fit of the model to these government spending shares.

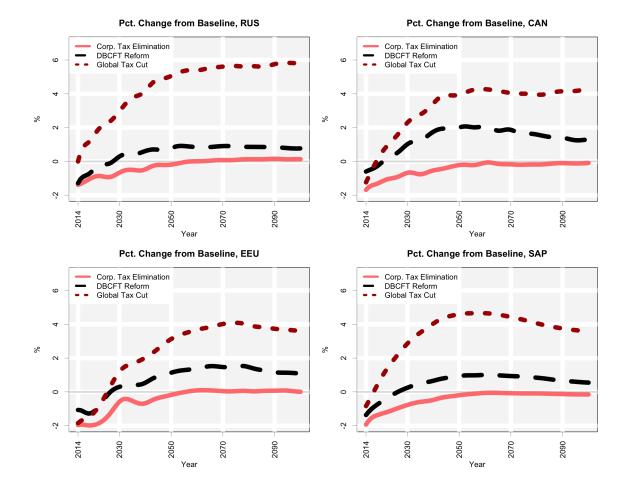
The endogenous revenue shares do not line up as closely. This reflects two things. First, some regions ran larger deficits in 2014 than maintenance of a fixed debt-to-GDP ratio would entail. The U.S. is a good example. The IMF's accounting suggests the U.S. government (federal, state, and local)

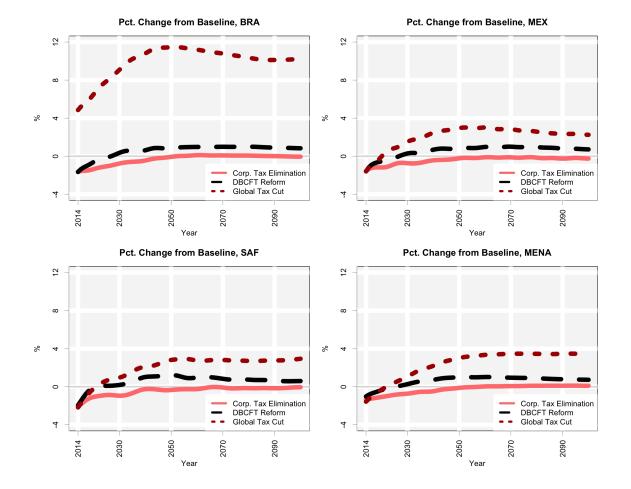

²⁷The SAF and SOV asset shares in the GGM are positive, but less than 0.1 percent.

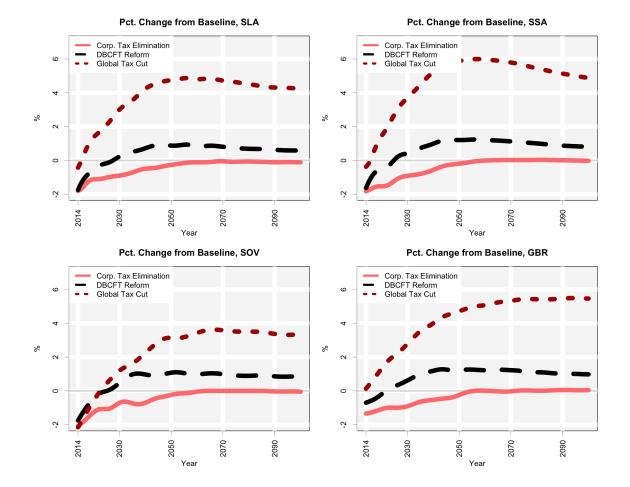
	USA	WEU	Japan	China	India	Russia	BRA	GBR	CAN
Gross Domestic Product (PPP) as share of U.S.									
Data	100.0	93.2	41.4	105.4	42.3	21.1	18.9	15.0	16.4
Model	100.0	93.4	40.8	105.4	42.6	22.1	18.6	16.8	17.2
Private Consumption (% of GDP)									
Data	68.5	55.9	53.5	36.6	60.4	54.4	63.4	64.4	56.2
Model	68.3	55.4	53.0	36.3	60.7	53.9	62.9	65.7	56.6
Government Consumption (% of GDP)									
Data	19.3	24.8	15.3	19.1	16.6	24.3	24.6	25.9	23.4
Model	19.2	26.0	15.3	19.5	17.1	25.5	26.2	27.0	23.2
Share of Total Assets									
Data	31.2	26.1	11.2	8.2	1.3	0.8	1.2	5.8	6.0
Model	32.0	23.0	11.0	8.0	1.0	1.0	1.0	6.0	5.0
Fossil Fuel Rents as % of GDP									
Data	0.9	0.2	0.0	1.2	1.1	13.8	2.4	4.7	3.8
Model	0.9	0.3	0.0	1.2	1.2	14.9	2.9	4.6	4.4
	MENA	MEX	SAF	SAP	SLA	SOV	SSA	EEU	
Gross Domestic Product (PPP) as share of U.S.									
Data	38.2	12.5	4.1	34.9	22.0	4.1	12.3	5.1	
Model	37.7	13.1	5.0	35.6	22.5	5.1	12.4	4.2	
Private Consumption (% of GDP)									
Data	51.3	68.6	60.6	59.3	64.8	52.7	70.4	51.0	
Model	51.2	68.9	61.1	59.5	65.0	53.6	68.6	51.0	
Government Consumption (% of GDP)									
Data	24.7	14.8	20.0	14.0	19.1	20.5	20.7	22.7	
Model	25.2	14.0	19.4	13.8	19.2	19.7	20.2	23.5	
Share of Total Assets									
Share of Total Assets Data	2.0	0.9	0.3	2.9	1.1	0.2	0.4	0.4	
	$2.0 \\ 3.0$	$0.9 \\ 1.0$	$0.3 \\ 0.0$	2.9 2.0	$1.1 \\ 1.0$	$0.2 \\ 0.0$	$0.4 \\ 0.4$	$0.4 \\ 0.3$	
Data									
Data Model									

Appendix Table A4: IMF and GGM 2014 Macro Indicators

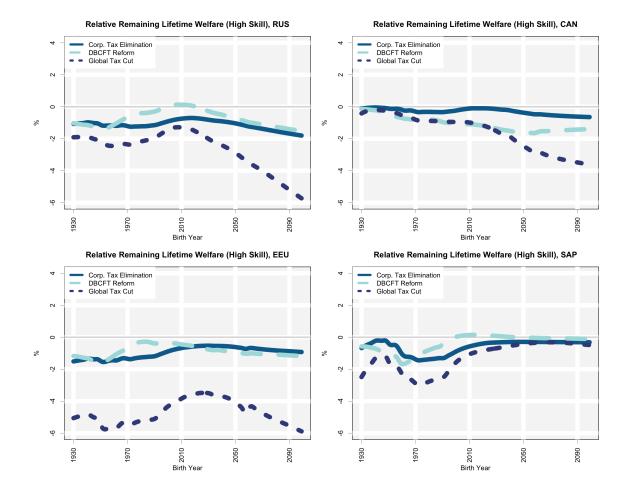

deficit was 5.7 percent of GDP in 2014, which is far higher than the 2.6 percent real GDP growth recorded in that year. As indicated, our baseline as well as policy simulations assume a fixed ratio of debt-to-GDP. Consequently, the GGM, which produces about a 1 percent growth rate in GDP in 2014, extracts more general revenue.²⁸ Second, the GGM includes no aggregate risk. Hence, the model has no equity premium; i.e., the government borrowing rate equals the world interest rate. Since we calibrate each region's initial debt level to match observed government net interest payments as a share of GDP, our initial government debt levels are lower than the official figures. Stated differently, since the interest rate in our model exceeds, for most regions, the actual rate paid by governments, we reduce the initial debt to match government interest payments as a share of GDP.

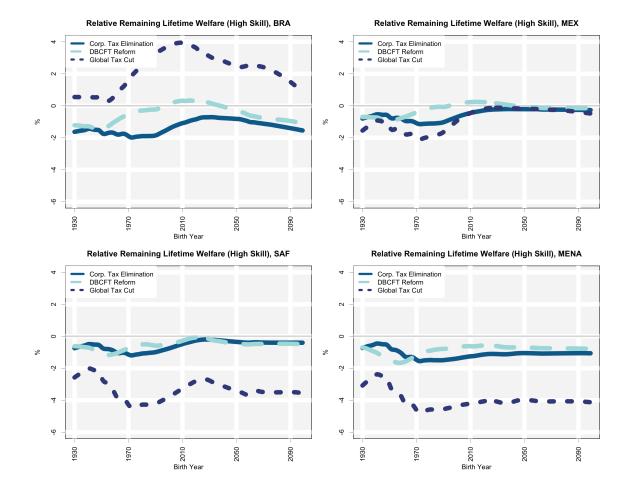

 $^{^{28}}$ To be clear, the GGM can be run with policies that entail increases or decreases over an extended period in the debt-to-GDP ratio. But our focus here is on evaluating U.S. tax reform, not U.S. or foreign deficit policies.


Appendix Figure A1: U.S. Wage Percentage Change Above Baseline From Reforms

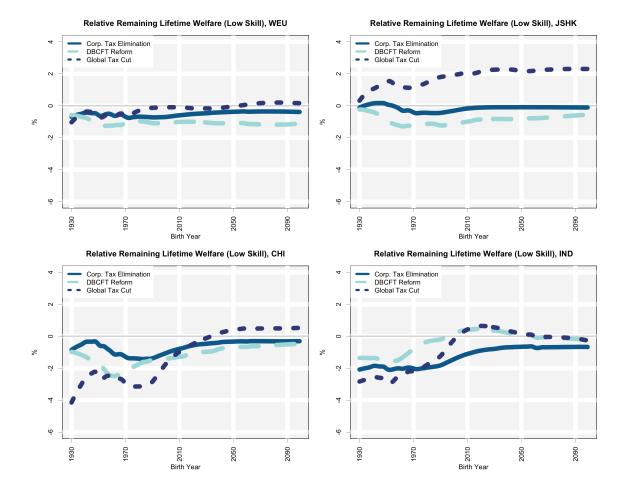


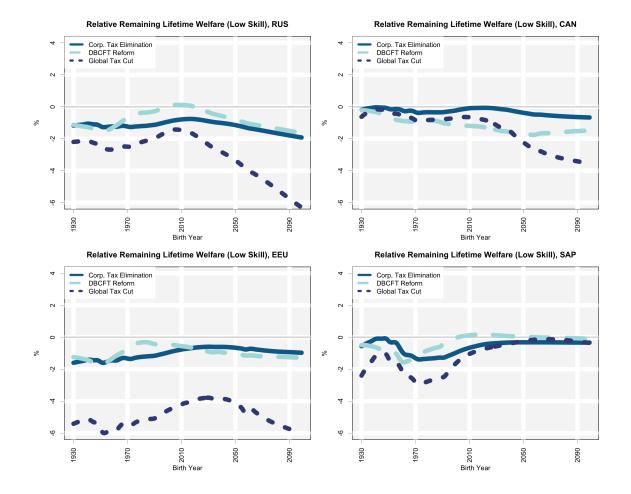
Appendix Figure A3: Region-specific GDP Percentage Change above Baseline from Reforms (Continued)

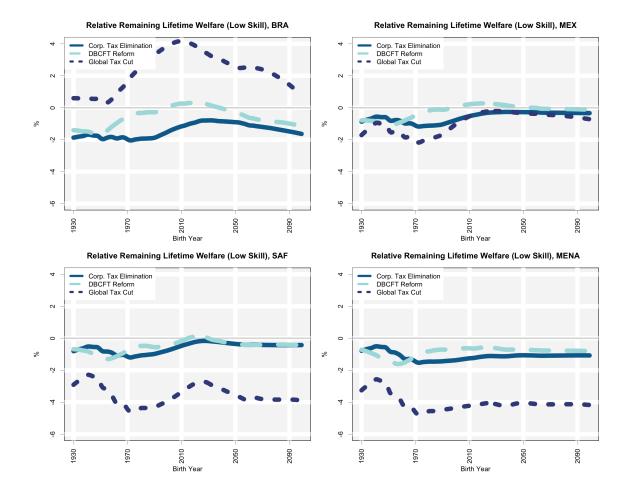

Appendix Figure A4: Region-specific GDP Percentage Change above Baseline from Reforms (Continued)

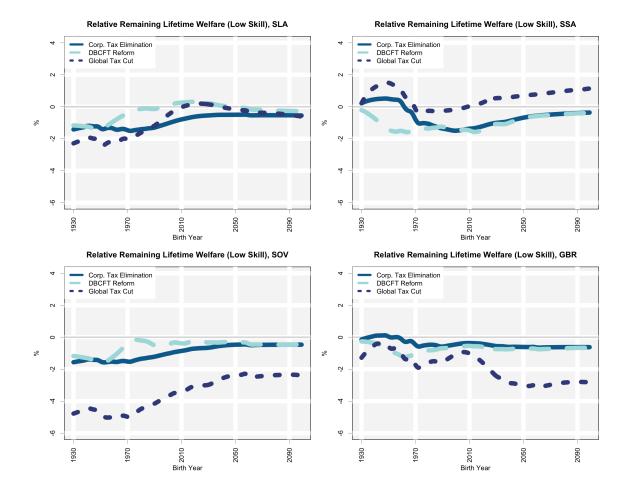

Appendix Figure A5: Region-specific GDP Percentage Change above Baseline from Reforms (Continued)

Appendix Figure A6: Region-specific High Skill Remaining Lifetime Welfare Change from Reforms


Appendix Figure A7: Region-specific High Skill Remaining Lifetime Welfare Change from Reforms (Continued)


Appendix Figure A8: Region-specific High Skill Remaining Lifetime Welfare Change from Reforms (Continued)


Appendix Figure A9: Region-specific High Skill Remaining Lifetime Welfare Change from Reforms (Continued)


Appendix Figure A10: Region-specific Low Skill Remaining Lifetime Welfare Change from Reforms

Appendix Figure A11: Region-specific Low Skill Remaining Lifetime Welfare Change from Reforms (Continued)

Appendix Figure A12: Region-specific Low Skill Remaining Lifetime Welfare Change from Reforms (Continued)

Appendix Figure A13: Region-specific Low Skill Remaining Lifetime Welfare Change from Reforms (Continued)

	U	SA	W	EU	Jł	CSH	C	THI	Ι	ND	R	US	В	RA
	Data	Model												
Total Expenditures	33.5	32.8	44.1	45.3	25.1	25.5	24.3	24.3	27.0	26.8	37.9	39.3	37.3	38.2
Health	7.8	8.0	5.6	5.9	3.5	3.6	1.5	1.5	1.0	1.1	3.9	4.1	2.6	3.0
Education	5.1	5.0	4.6	4.9	1.4	1.4	3.9	3.9	2.8	2.9	4.4	4.8	5.4	5.9
Purchases of G&S excl. Health and Education	6.4	6.2	14.6	15.2	10.4	10.3	13.8	14.1	12.8	13.1	16.0	16.7	16.6	17.4
Pension Benefits	8.5	8.2	13.4	13.3	7.7	7.7	2.6	2.5	4.1	4.2	8.9	9.2	6.9	6.9
Transfers & Ben Different from Pensions	5.1	4.8	3.9	4.1	2.7	2.8	2.4	2.2	1.7	1.8	3.9	4.1	1.0	1.1
Net Payment on Debt/Assets	0.6	0.5	2.0	1.9	-0.5	-0.3	0.2	0.2	4.5	3.7	0.7	0.5	4.8	4.0
General Government Revenues	27.8	32.5	38.5	45.0	20.0	25.5	22.7	24.3	19.8	25.3	36.6	39.2	30.6	36.3
Tax Revenues	21.8	26.7	27.4	34.0	14.3	23.4	20.9	22.5	17.6	23.2	18.2	19.7	22.9	28.4
Corporate Tax	3.2	3.1	2.9	3.0	3.6	3.6	4.1	4.1	3.9	3.8	3.1	3.5	4.1	4.4
Consumption Tax	9.8	12.4	16.8	18.1	6.4	9.5	15.7	17.2	11.7	16.4	11.3	12.1	16.4	20.9
Income Tax	8.8	11.2	7.6	12.9	4.4	10.3	1.1	1.2	2.0	2.9	3.8	4.1	2.5	3.1
Non Tax Revenues	6.0	5.8	11.1	11.1	5.7	2.1	1.8	1.8	2.2	2.2	18.4	19.5	7.7	7.9
Social Security Contributions (Pensions)	5.7	5.5	11.0	11.0	5.7	2.1	1.5	1.5	1.9	1.9	7.2	7.4	6.0	5.9
Other	0.3	0.3	0.1	0.1	0.0	0.0	0.3	0.3	0.3	0.3	11.1	12.1	1.7	2.0
	G	BR	С	AN	MENA		Μ	EX	S	AF	S	AP	SLA	
	Data	Model												
Total Expenditures	43.7	45.6	35.6	34.7	33.2	33.8	22.6	21.1	32.1	30.7	20.5	20.0	28.1	28.0
Health	7.6	8.0	6.7	6.7	0.9	1.0	3.5	3.3	1.4	1.3	0.6	0.6	4.1	4.2
Education	5.2	5.4	5.1	5.1	1.2	1.2	4.4	4.2	1.9	1.8	0.6	0.6	4.0	4.2
Purchases of G&S excl. Health and Education	13.1	13.6	11.6	11.5	22.6	23.1	6.9	6.5	16.7	16.2	12.8	12.7	10.9	10.7
Pension Benefits	13.9	14.1	9.7	9.3	2.1	2.0	3.2	3.2	4.8	4.7	1.5	1.6	5.8	5.8
Transfers & Ben Different from Pensions	2.6	2.8	1.5	1.5	5.0	5.3	2.1	2.0	4.2	4.0	3.0	3.0	1.9	1.8
Net Payment on Debt/Assets	1.3	1.6	1.0	0.6	1.4	1.3	2.5	2.0	3.1	2.6	1.9	1.6	1.3	1.3
General Government Revenues	38.0	45.4	32.1	34.4	35.0	33.0	18.8	19.8	28.0	28.5	18.6	18.8	23.6	27.4
Tax Revenues	26.6	36.0	28.7	30.8	14.6	11.4	12.9	13.5	23.9	24.4	17.6	17.7	17.1	20.4
Corporate Tax	6.0	6.0	4.5	4.5	2.9	2.7	2.1	2.0	5.3	4.4	3.9	3.8	3.0	2.9
Consumption Tax	13.0	25.4	11.7	13.4	10.3	7.6	8.4	8.9	9.7	10.5	11.8	11.9	13.3	16.4
Income Tax	7.6	4.7	12.4	12.9	1.4	1.1	2.4	2.6	8.9	9.6	1.9	1.9	0.8	1.1
Non Tax Revenues	11.4	9.4	3.4	3.6	20.4	21.6	5.8	6.3	4.1	4.1	1.0	1.1	6.5	7.0
Social Security Contributions (Pensions)	7.6	7.7	1.5	1.5	1.0	0.9	2.8	2.9	4.1	4.0	0.5	0.6	3.6	3.6
Other	3.8	1.7	1.9	2.1	19.4	20.6	3.0	3.5	0.0	0.0	0.5	0.6	2.9	3.5

Appendix Table A5: Government Finances in 2014: Model and Real Data

	S	OV	S	SA	Ε	EU
	Data	Model	Data	Model	Data	Mode
Total Expenditures	32.3	31.3	27.2	25.7	40.7	41.1
Health	0.8	0.8	1.0	1.0	1.9	1.9
Education	1.4	1.3	1.4	1.5	2.1	2.2
Purchases of G&S excl. Health and Education	18.3	17.5	18.3	17.6	18.7	19.4
Pension Benefits	7.5	7.4	0.8	0.8	14.3	14.5
Transfers & Ben Different from Pensions	3.3	3.3	4.0	3.6	1.9	1.5
Net Payment on Debt/Assets	1.0	0.9	1.7	1.1	1.9	1.5
General Government Revenues	24.8	31.0	23.9	24.7	38.3	40.7
Tax Revenues	20.9	26.1	19.9	20.5	24.9	24.7
Corporate Tax	3.7	3.8	2.8	2.8	4.1	3.9
Consumption Tax	13.6	17.7	14.2	14.8	16.2	16.2
Income Tax	3.5	4.6	2.8	2.9	4.6	4.6
Non Tax Revenues	4.0	4.9	4.1	4.2	13.4	16.1
Social Security Contributions (Pensions)	2.1	2.1	0.1	0.1	10.2	10.3
Other	1.9	2.8	4.0	4.1	3.3	5.8

Appendix Table A6: Pension System Parameters

	Retirement Age	Pens. Taxable Income Cap (Multiple of Avg. Wage)	Share of Pens. Paid by Pension Tax	Pension Replacemen Rate (ν_1)
USA	66	2.90	0.667	.8643
WEU	65	2.00	0.825	1.042
JKSH	61	1.55	0.271	0.345
CHI	60	3.00	0.583	0.210
IND	60	3.00	0.448	0.500
RUS	60	None	0.811	0.670
CAN	65	None	0.159	0.910
EEU	65	None	0.711	1.510
SAP	58	None	0.349	0.158
BRA	65	None	0.860	1.210
MEX	65	None	0.883	0.660
SAF	60	None	0.854	0.660
MENA	60	None	0.463	0.410
SLA	65	None	0.617	0.970
SSA	55	None	0.120	0.096
SOV	62	None	0.283	1.230
GBR	55	None	0.547	0.520

Appendix Table A7: Country Specific Time Preferences in the Model ____ ____

Appendix Table A8:	Country Specific Initial Labor
Productivity and Cat	chup Rates

Time Preferer	nce Parameter
	δ -value
USA	-0.0344
WEU*	-0.0632
JKSH*	-0.0608
CHI*	-0.0352
IND	0.0792
RUS	0.0936
CAN	-0.0480
EEU	-0.0216
SAP	0.0312
BRA	0.0688
MEX	0.0528
SAF	0.0040
MENA	0.0440
SLA	0.0672
SSA	0.0024
SOV	0.0200
GBR	0.0022

Countries with (*) have a changing δ as discussed in text.

	Initial Labor Productivity	Years to Catch-up
USA	1.000	-
WEU	0.310	30
JKSH	0.470	20
CHI	0.112	30
IND	0.056	100
RUS	0.270	45
CAN	0.580	20
EEU	0.060	45
SAP	0.075	30
BRA	0.170	30
MEX	0.200	30
SAF	0.180	100
MENA	0.068	100
SLA	0.150	100
SSA	0.035	100
SOV	0.100	100
GBR	0.700	100

Population
and
Capital
Assets,
<u>^</u>
H
GDP
0
Ыd
G
M
jC
Shares o
ю́.
$\mathbf{U.S}$
49:
0
Įq
ർ
H
Appendix
4

_	_		_					
_		Share of World Pop.	4.451	4.431	4.301	4.093	4.193	4.172
lobal Tax Cut	in Percentage	Share of Share of Jobal Assets Global Capital	16.609	18.816	12.420	7.252	5.523	5.547
Global 7	in Perc	Share of Global Assets	32.000	31.000	26.000	20:000	13.000	9.000
	_	Share of Global GDP	16.878	17.674	11.072	6.423	4.897	4.930
		Share of World Pop.	4.451	4.431	4.301	4.093	4.193	4.172
Reform	entage	Share of Slobal Capital W	19.581	19.592	12.495	7.157	5.397	5.369
BCFT Reform	in Percentage	Share of Global Assets	32.000	32.000	27.000	20.000	13.000	9.000
		Share of Global GDP	18.211	17.929	11.237	6.518	4.939	4.925
_	_	Share of World Pop.	4.451	4.431	4.301	4.093	4.193	4.172
: Elimination	in Percentage	Share of Global Capital	20.661	20.840	13.927	8.327	6.483	6.434
Corporate Tax		Share of Global Assets	32.000	31.000	23.000	15.000	9.000	5.000
		Share of Global GDP	18.025	17.959	11.652	6.987	5.466	5.446
		Share of World Pop.	4.451	4.431	4.301	4.093	4.193	4.172
licy	entage	Share of Share of Global Capital World Pop.	16.609	16.395	10.002	5.961	4.740	4.726
Baseline Policy	in Percentage	Share of Global Assets 0	32.000	30.000	23.000	15.000	8.000	4.000
		Share of Global GDP	16.878	16.729	10.558	6.352	5.009	4.980
	_	Year	2014	2020	2040	2060	2080	2100

Appendix Table A10: Baseline GDP and Percentage Change from Baseline Due to Reforms

-1-	-	a ti	u—					1-	-	a ti				_		-1							
	seline	Foreign Tax Cut	0.00	1.34	4.20	5.48	5.51 5.84		seline	Foreign Tax Cut	-2.00	0.00	2.17	2.33	2.66	9.09							
	Scenario % of Baseline	BCFT Reform	-1.36	-0.45	0.70	1.01	0.79		% of Ba	House Reform	-2.00	0.00	1.09	0.78	1.06	10.0							
RUS	Scenario	Corp. Tax Elimination	-1.36	-0.89	-0.35	0.00	0.13 0.21	SAF	Scenario % of Baseline	Corp. Tax Elimination	-2.00	0.00	0.00	-0.78	0.00	00.00							
		Baseline Policy	0.22	0.22	0.29	0.49	0.76			Baseline Policy	0.05	0.06	0.09	0.13	0.19	0.33							
	ine	Foreign Tax Cut	0.70	2.58	6.30	7.02	6.57 6.23		ine	Foreign Tax Cut	-1.53	0.00	2.37	3.01	2.63	7.20	ine	Foreign Tax Cut	0.00	2.85	5.15	5.39	
1	Scenario % of Baseline	BCFT Reform	-1.64	-0.79	0.68	0.83	0.65 0.52		% of Basel	BCFT Reform	-1.53	-0.61	0.59	0.90	0.95	/0.0	Scenario % of Baseline	BCFT Reform	0.60	01.0	1.37	1.04	
IND	Scenario 5	Corp. Tax Elimination	-2.11	-1.59	-0.53	-0.06	0.00	MEX	Scenario % of Baseline	Corp. Tax Elimination	-1.53	-1.23	-0.59	-0.15	-0.11	-0.29 GBR	Scenario ?	Corp. Tax Elimination	-1.19	-1.17	0.00	0.00	
		Baseline Policy	0.43	0.50	1.32	3.50	6.92 9.54			Baseline Policy	0.13	0.16	0.34	0.67	0.95	1:00		Baseline Policy	0.17	11.0	0.29	0.48	
	line	Foreign Tax Cut	-0.85	1.04	4.47	5.08	4.27 3.69		line	Foreign Tax Cut	4.84	6.42	10.68	11.23	10.35	10.21	line	Foreign Tax Cut	-1.96	00.0	343	3.50	
	Scenario % of Baseline	BCFT Reform	-1.23	-0.26	1.30	2.42	2.46 1.69		BKA Scenario % of Baseline	BCFT Reform	-1.61	-0.46	0.68	1.00	1.05	0.03	Scenario % of Baseline	BCFT Reform	-1.96	00.0	0.86	0.82	
CHI	Scenario	Corp. Tax Elimination	-1.90	-1.38	-0.42	0.15	0.10 -0.06	BRA		Corp. Tax Elimination	-1.61	-1.38	-0.45	0.10	0.06	on:n-	Scenario	Corp. Tax Elimination	-1.96	00.0	0.00	0.00	
		Baseline Policy	1.05	1.16	2.15	3.34	3.82 5.26			Baseline . Policy	0.19	0.22	0.44	1.00	1.61	1.09		Baseline Policy	0.05	010	0.23	0.49	
	line	Foreign Tax Cut	0.49	2.23	5.37	5.09	4.46 4.17		Scenario % of Baseline	Foreign Tax Cut	-0.84	0.84	4.08	4.66	4.06	\$0.5	line	Foreign Tax Cut	0.00	66.3	5.97	5.44	
	Scenario % of Baseline	BCFT Reform	-0.98	0.00	1.98	2.55	2.23			BCFT Reform	-1.40	-0.63	0.70	1.00	0.84	0.00	Scenario % of Baseline	BCFT Reform	-1.61	1.07	1.22	1.01	
JKSH	Scenario	Corp. Tax Elimination	-1.96	-1.49	-0.56	-0.23	-0.19	SAP		Corp. Tax Elimination	-1.97	-1.26	-0.45	-0.06	-0.09	er-o-	Scenario	Corp. Tax Elimination	-1.61	-1.05 10.15	0.00	0.03	
		Baseline Policy	0.41	0.40	0.35	0.43	0.54			Baseline Policy	0.36	0.48	1.57	3.39	4.29	6.4		Baseline Policy	0.12	91.0	5.80	7.85	
	sline	Foreign Tax Cut	-1.07	0.61	3.60	4.38	4.34 3.91		sline	Foreign Tax Cut	-2.38	-2.17	2.11	3.55	3.70	3.04	sline	Foreign Tax Cut	-0.44	1 30	4.77	4.49	
1	Scenario % of Baseline	BCFT Reform	-1.18	-0.20	1.25	1.84	2.26 2.44		Scenario % of Baseline	BCFT Reform	-2.38	-2.17	0.00	1.18	1.39		Scenario % of Baseline	BCFT Reform	-1.78	0.68	0.79	0.69	
WEU	Scenario	Corp. Tax Elimination	-1.71	-1.33	-0.48	0.08	0.18 0.09	EEU	Scenario	Corp. Tax Elimination	-2.38	-2.17	-1.05	0.00	0.00	SLA	Scenario	Corp. Tax Elimination	-1.78	-1.15	0.110	-0.06	
		Baseline Policy	0.93	0.98	1.45	2.56	3.41 3.53			Baseline . Policy	0.04	0.05	0.10	0.17	0.22	0.30		Baseline Policy	0.23	0.44	0.88	1.58	
	dine	Foreign Tax Cut	3.80	3.68	2.75	-1.24	-4.76 -3.51		dine	Foreign Tax Cut	-1.16	0.52	3.69	4.38	4.02	4.42	line	Foreign Tax Cut	-1.59	-0.22	3.34	3.45	
	Scenario % of Baseline	BCFT Reform	7.90	7.17	6.44	2.61	-1.39		Scenario % of Baseline	BCFT Reform	-0.58	0.00	1.84	2.19	1.51	1.42	Scenario % of Baseline	BCFT Reform	-1.06	0.68	0.99	0.89	
USA	Scenario	Corp. Tax Elimination	6.80	7.35	10.36	9.99	9.13 9.36	CAN	Scenario	Baseline Corp. Tax Policy Elimination	-1.74	-1.05	-0.46	0.00	-0.25	MENA	Scenario	Corp. Tax Elimination	-1.33	-0.40	0.00	0.11	
		Baseline Policy	1.00	1.12	1.27	1.53	2.02 2.91			Baseline Policy	0.17	0.19	0.22	0.27	0.40	0.03		Baseline Policy	0.38	1.02	2.43	4.72	
	_	Year	2014	2020	2040	2060	2080 2100			Year	2014	2020	2040	2060	2080	2100		Year	2014	2070	2060	2080	

Appendix Table A11: U.S. Baseline GDP and Percentage Changes above Baseline from Reforms

Appendix Table A12: U.S. Baseline Capital Stock and Percentage Changes Above Baseline From Reforms

		Refo	rm Scenar	ios
fears	Baseline Policy	Corp. Tax Elimination	BCFT Reform	Foreign Tax Cuts
	1.00	6.80	7.90	3.80
	1.12	7.35	7.50	3.68
020				
2025	1.19	7.91	6.65	3.45
2030	1.22	8.66	6.70	3.43
035	1.24	9.49	6.67	3.30
2040	1.27	10.36	6.44	2.75
2045	1.32	10.76	5.76	1.82
2050	1.38	10.69	4.62	0.58
2055	1.46	10.49	3.56	-0.41
2060	1.53	9.99	2.61	-1.24
2080	2.02	9.13	-1.39	-4.76
2100	2.91	9.36	-1.10	-3.51

Appendix Table A13: U.S. Baseline Wages and Percentage Changes Above Baseline From Reforms

		eline licy		ation of rate Tax		e Tax lan	Global Tax Match		
	Low-Skilled	High-Skilled	Low-Skilled	High-Skilled	Low-Skilled	High-Skilled	Low-Skilled	High-Skilled	
2014	1.00	2.46	7.8	9.5	4.8	4.9	0.6	0.3	
2020	0.99	2.37	8.9	10.3	5.7	6.5	2.4	2.9	
2025	0.97	2.27	9.8	11.1	6.4	7.7	3.5	4.5	
2030	0.95	2.15	10.9	12.0	7.0	8.9	4.3	5.9	
2035	0.92	2.05	12.0	12.8	7.5	10.0	5.0	7.3	
2040	0.89	1.94	13.0	13.6	7.9	11.1	5.5	8.4	
2060	0.92	1.85	13.9	13.3	7.3	12.2	5.8	10.2	
2080	0.96	1.91	13.2	12.4	6.6	11.6	5.2	9.9	
2100	0.98	1.94	12.6	12.4	6.2	11.2	4.7	9.7	

Birth		ation of rate Tax		CFT lan		al Tax atch
Year	Low-Skilled	High-Skilled	Low-Skilled	High-Skilled	Low-Skilled	High-Skilled
1935	0.4	0.2	-2.3	-1.2	-2.0	-1.2
1940	0.2	0.1	-2.0	-1.1	-1.6	-0.9
1945	0.3	0.2	-2.1	-1.1	-1.6	-1.0
1950	0.6	0.4	-2.3	-1.3	-1.7	-1.2
1955	0.5	0.3	-2.2	-1.4	-1.4	-1.1
1960	0.9	0.6	-1.1	-0.8	-0.5	-0.6
1965	1.0	0.6	-0.6	-0.4	0.0	-0.2
1970	1.7	1.1	1.3	1.2	1.5	1.2
1975	1.9	1.3	2.2	2.0	2.4	2.0
1980	2.2	1.4	3.0	2.9	3.3	3.0
1985	2.6	1.6	4.3	4.1	4.5	4.2
1990	2.8	1.8	5.2	5.0	5.5	5.2
2000	3.4	2.1 7.1 6.9		6.9	7.6	7.2
2005	3.7	2.3	8.1	8.0	8.7	8.4
2010	4.1	2.6	9.2	9.2	10.0	9.7
2015	4.2	2.6	9.9	9.8	10.7	10.4
2020	4.4	2.8	10.8	10.9	11.6	11.5
2025	4.5	2.8	11.5	11.6	12.4	12.3
2030	4.4	2.7	12.0	12.1	12.9	12.8
2035	4.7	2.9	13.4	13.9	14.4	14.7
2040	4.9	3.0	14.6	15.6	15.6	16.4
2045	4.5	2.7	14.1	14.7	15.1	15.5
2050	4.2	2.5	13.5	13.9	14.4	14.6
2055	4.2	2.6	13.8	14.3	14.7	15.1
2060	3.7	2.3	12.3	12.5	13.1	13.1
2070	3.7	2.3	12.1	12.5	12.6	12.9
2080	3.6	2.2	11.3	11.8	11.7	12.1
2100	3.4	2.0	10.3	10.9	10.4	11.0

Appendix Table A14: U.S. Welfare Increase from Reforms

Appendix Table A15: U.S. Baseline Labor Supply and Percentage Changes Above Baseline From Reforms

Year		eline licy	Elimination of Corporate Tax			e Tax lan	Global Tax Match		
Ital	Low-Skilled	High-Skilled	Low-Skilled	High-Skilled	Low-Skilled	High-Skilled	Low-Skilled	High-Skilled	
2014	1.00	1.00	-0.80	-2.30	3.20	3.10	3.71	3.51	
2020	1.13	1.16	-1.15	-2.58	1.51	0.69	2.24	1.30	
2025	1.23	1.29	-1.63	-2.78	0.16	-1.00	1.07	-0.47	
2030	1.30	1.40	-1.92	-2.85	-0.38	-2.14	0.63	-1.53	
2035	1.36	1.50	-2.13	-2.86	-0.96	-3.26	0.08	-2.66	
2040	1.44	1.62	-2.16	-2.71	-1.53	-4.44	-0.65	-3.81	
2060	1.68	2.04	-3.28	-2.84	-4.95	-9.11	-6.83	-9.97	
2080	2.13	2.62	-3.58	-2.86	-8.24	-12.32	-10.67	-13.45	
2100	3.03	3.76	-2.84	-2.66	-7.43	-11.60	-8.44	-12.03	

	Baseline Policy		Elimination of Corporate Tax		BCFT Reform		Global T Match	
Year	Consumption	Income	Consumption	Income	Consumption	Income	Consumption	Income
2014	18.1	13.7	20.4	14.5	33.1	11.5	33.1	11.0
2015	18.4	13.8	20.7	14.7	33.1	11.9	33.1	11.4
2020	19.3	14.7	21.7	15.6	33.1	12.9	33.1	12.5
2025	19.7	15.1	22.1	16.1	33.1	13.0	33.1	12.5
2030	19.4	15.1	21.9	16.3	33.1	12.1	33.1	11.5
2035	19.3	15.3	21.9	16.5	33.1	11.4	33.1	10.6
2040	18.9	14.6	21.7	15.9	33.1	9.7	33.1	8.8
2060	18.5	14.6	21.0	15.9	33.1	6.2	33.1	5.0
2080	21.5	17.6	23.8	18.8	33.1	8.1	33.1	6.7
2100	25.6	19.1	28.5	20.5	33.1	13.5	33.1	12.5

Additional wage subsidy of 11.9 percent under the House tax plan and global tax-matching scenarios.

Welfare for a skill- and country-specific cohort born in year t is measured as a compensating differential. The compensating differential measures the percentage increase in annual consumption and leisure in the baseline transition needed to achieve lifetime utility under the reform.

Year	Baseline Policy	Elimination of Corp. Tax	BCFT Plan	Foreign Tax Cut
2014	4.67	5.11	4.98	5.89
2020	5.04	5.37	5.16	5.87
2025	5.59	5.87	5.60	6.25
2030	6.31	6.56	6.24	6.87
2035	7.14	7.34	6.98	7.59
2040	8.06	8.24	7.85	8.47
2060	8.05	8.11	7.83	8.25
2080	7.11	7.17	6.95	7.31
2100	6.72	6.78	6.62	6.95

Appendix Table A17: World Interest Rate

Appendix Table A18: Baseline Macro Aggregates and Tax Rates.

			Baseline Simul			or supplies are r	elative to 2014	U.S. levels	
	Year	GDP	Capital Stock	Labor Low Skilled	Supply High Skilled	Corporate Tax	Income Tax	Pension Tax	Consumption Ta
TICA	9014	1.00	1.00		-	24.60	19.67	F 4F	10.19
USA	2014 2020	1.00 1.12	1.00 1.08	1.00	1.00	34.60	13.67	5.45 6.70	18.13
	2020	1.12	1.08	1.13 1.23	1.16 1.29	34.60 34.60	14.67 15.05	6.70 7.94	19.33 19.68
	2025	1.19	1.05	1.23	1.29	34.60	15.05	9.47	19.08
	2030	1.22	0.99	1.30	1.40	34.60	15.12	9.47 10.57	19.40
	2035	1.24	0.94	1.44	1.62	34.60	14.57	11.54	18.92
	2040	1.53	1.14	1.68	2.04	34.60	14.58	14.44	18.52
	2080	2.02	1.62	2.13	2.62	34.60	17.59	12.29	21.47
	2100	2.91	2.44	3.03	3.76	34.60	19.10	11.64	25.57
WEU	2014	0.93	1.00	0.86	1.01	25.40	16.15	10.95	32.64
	2020	0.98	1.01	0.91	1.09	25.40	16.64	12.96	32.19
	2040	1.45	1.16	1.53	1.83	25.40	17.02	11.24	35.84
	2060	2.56	2.05	2.75	3.12	25.40	15.86	6.50	35.85
	2080	3.41	2.92	3.48	4.04	25.40	13.72	9.36	28.45
	2100	3.53	3.10	3.40	4.31	25.40	13.37	15.18	22.91
JKSH	2014	0.41	0.41	0.35	0.53	35.50	12.70	2.08	18.01
	2020	0.40	0.39	0.35	0.53	35.50	13.12	2.71	16.57
	2040	0.35	0.25	0.35	0.51	35.50	12.37	5.07	12.33
	2060	0.43	0.29	0.42	0.58	35.50	10.14	3.90	9.12
	2080	0.54	0.39	0.49	0.68	35.50	8.41	2.75	8.19
	2100	0.65	0.48	0.58	0.80	35.50	8.83	3.08	8.14
CHI	2014	1.05	1.13	0.96	1.17	26.00	1.76	1.45	47.48
	2020	1.16	1.20	1.08	1.30	26.00	1.73	1.94	44.13
	2040	2.15	1.75	2.38	2.67	26.00	1.40	2.38	33.07
	2060	3.34	2.75	3.93	3.88	26.00	1.25	2.00	28.98
	2080	3.82	3.40	4.48	4.07	26.00	1.18	3.61	23.21
	2100	5.26	4.84	6.10	5.50	26.00	1.28	3.73	21.98
IND	2014	0.43	0.43	0.36	0.58	33.99	4.34	1.88	27.06
	2020	0.50	0.49	0.43	0.70	33.99	4.29	2.41	28.65
	2040	1.32	1.00	1.31	2.11	33.99	4.64	1.77	32.61
	2060	3.50	2.66	3.53	5.54	33.99	5.49	0.98	38.87
	2080	6.92	5.66	6.74	10.40	33.99	5.18	1.60	39.19
	2100	9.54	8.08	9.14	14.11	33.99	5.92	2.91	47.76
RUS	2014	0.22	0.20	0.18	0.20	27.90	7.05	7.44	22.51
	2020	0.22	0.20	0.19	0.21	27.90	8.48	10.62	28.64
	2040	0.29	0.20	0.28	0.32	27.90	11.73	13.09	43.61
	2060	0.49	0.37	0.51	0.59	27.90	15.52	7.51	73.47
	2080	0.76	0.64	0.78	0.90	27.90	16.24	8.23	91.62
	2100	0.96	0.86	1.00	1.19	27.90	18.81	11.68	126.94
BRA	2014	0.19	0.17	0.17	0.26	47.30	4.57	5.90	33.23
	2020	0.22	0.19	0.20	0.31	47.30	4.82	7.69	39.42
	2040	0.44	0.29	0.48	0.73	47.30	5.80	7.53	55.08
	2060	1.00	0.65	1.11	1.65	47.30	6.42	4.74	58.76
	2080	1.61	1.15	1.72	2.55	47.30	6.10	9.26	66.80
	2100	1.69	1.25	1.77	2.63	47.30	7.43	19.75	86.91

				Labor	Supply				
	Year	GDP	Capital Stock	Low Skilled	High Skilled	Corporate Tax	Income Tax	Pension Tax	Consumption Tax
GBR	2014	0.2	0.2	0.1	0.2	25.0	5.6	7.7	38.7
	2020	0.2	0.2	0.1	0.2	25.0	6.0	9.9	40.7
	2040	0.2	0.1	0.2	0.2	25.0	6.8	12.8	47.9
	2060	0.3	0.2	0.3	0.4	25.0	8.2	7.0	68.8
	2080	0.5	0.4	0.5	0.6	25.0	7.0	5.1	63.8
	2100	0.6	0.5	0.6	0.7	25.0	7.0	6.6	60.8
CAN	2014	0.2	0.2	0.1	0.2	23.9	16.3	1.5	23.7
	2020	0.2	0.2	0.2	0.2	23.9	18.3	2.0	25.5
	2040	0.2	0.2	0.2	0.3	23.9	22.6	4.2	27.2
	2060	0.3	0.2	0.3	0.4	23.9	23.7	4.6	28.7
	2080	0.4	0.3	0.4	0.5	23.9	26.3	3.3	33.7
	2100	0.4	0.6	0.6	0.8	23.9	26.8	2.8	39.2
MENA	2014	0.4	0.3	0.2	0.4	17.5	2.0	0.9	14.9
	2020	0.5	0.4	0.3	0.5	17.5	3.0	1.2	25.5
	2020	1.0	0.4	0.9	1.4	17.5	5.4	1.2	53.0
	2040			2.2					
		2.4	2.0		3.4	17.5	6.6	1.7	70.3
	2080	4.7	4.3	4.2	6.5	17.5	6.9	2.6	80.7
	2100	7.4	7.1	6.7	10.3	17.5	7.5	3.8	92.6
MEX	2014	0.1	0.1	0.1	0.1	19.7	3.9	2.9	12.9
	2020	0.2	0.2	0.1	0.2	19.7	4.0	3.4	14.7
	2040	0.3	0.3	0.4	0.4	19.7	4.7	4.2	19.2
	2060	0.7	0.6	0.7	0.7	19.7	5.0	4.2	20.1
	2080	1.0	0.9	1.0	1.0	19.7	5.0	7.5	21.1
	2100	1.0	1.0	1.1	1.1	19.7	5.7	12.8	23.8
SAF	2014	0.1	0.1	0.0	0.1	14.3	13.7	4.0	17.2
	2020	0.1	0.1	0.1	0.1	14.3	13.0	5.5	17.7
	2040	0.1	0.1	0.1	0.1	14.3	12.2	13.0	17.2
	2060	0.1	0.1	0.1	0.1	14.3	12.0	17.6	15.8
	2080	0.2	0.2	0.2	0.2	14.3	14.1	17.2	17.6
	2100	0.3	0.3	0.3	0.4	14.3	15.0	15.4	20.0
SAP	2014	0.4	0.4	0.3	0.4	25.3	2.8	0.6	20.1
	2020	0.5	0.5	0.4	0.5	25.3	2.7	0.6	18.6
	2040	1.6	1.3	1.7	1.9	25.3	3.1	0.5	18.4
	2060	3.4	2.8	3.9	4.0	25.3	3.1	0.6	21.4
	2080	4.3	3.8	4.8	4.7	25.3	3.3	1.7	22.5
	2100	4.7	4.3	5.2	5.1	25.3	3.9	2.6	22.5
SLA	2014	0.2	0.2	0.2	0.2	27.5	1.5	3.6	25.3
л	2014 2020	0.2	0.2	0.2	0.2	27.5	1.5	4.4	25.5 30.9
	2020	0.3					2.2	4.4	
	2040		0.3	0.5	0.5	27.5			40.5
		0.9	0.7	1.0	1.1	27.5	2.3	4.0	42.1
	2080	1.6	1.4	1.7	1.8	27.5	1.9	4.9	42.3
	2100	2.2	1.9	2.3	2.5	27.5	2.0	7.5	51.0

Appendix Table A18 Continued: Baseline Policy Macro Aggregates and Tax Rates.

			Baseline Simul	ation Results	(capital and lal	bor supplies are r	elative to 2014	U.S. levels)	
				Labor	Supply				
	Year	GDP	Capital Stock	Low Skilled	High Skilled	Corporate Tax	Income Tax	Pension Tax	Consumption Ta:
SOV	2014	0.1	0.1	0.0	0.1	17.5	7.0	2.1	33.0
	2020	0.1	0.1	0.0	0.1	17.5	8.3	3.1	41.5
	2040	0.1	0.1	0.1	0.1	17.5	9.0	3.5	47.7
	2060	0.2	0.2	0.2	0.3	17.5	8.0	1.1	40.4
	2080	0.5	0.4	0.5	0.5	17.5	6.6	1.2	33.8
	2100	0.7	0.6	0.7	0.7	17.5	7.9	2.6	40.8
SSA	2014	0.1	0.1	0.1	0.1	30.5	3.6	0.1	21.5
	2020	0.2	0.2	0.2	0.2	30.5	3.9	0.1	26.5
	2040	0.7	0.6	0.8	1.0	30.5	4.6	0.1	37.6
	2060	2.8	2.2	3.1	3.6	30.5	4.6	0.1	38.1
	2080	7.8	6.6	8.5	9.5	30.5	4.4	0.1	33.8
	2100	15.9	13.9	17.3	18.3	30.5	4.0	0.2	28.9
EEU	2014	0.0	0.0	0.0	0.0	15.1	7.5	10.3	31.8
	2020	0.0	0.0	0.0	0.0	15.1	8.1	12.9	34.3
	2040	0.1	0.1	0.1	0.1	15.1	8.4	9.4	42.9
	2060	0.2	0.1	0.2	0.2	15.1	8.2	7.0	44.3
	2080	0.2	0.2	0.2	0.2	15.1	10.8	16.3	48.2
	2100	0.4	0.3	0.4	0.4	15.1	12.3	14.9	62.1

Appendix Table A18 Continued: Baseline Policy Macro Aggregates and Tax Rates.

	Baseline Simulation Results - Marginal Products and Factor Payments										
		Marginal Product	Global	Wage	Rate	Marginal Pro	oduct of Labor				
	Year	of Capital	Interest Rate	Low Skilled	High Skilled	Low Skilled	High Skilled				
USA	2014	14.64	4.67	1.00	2.46	1.00	2.46				
	2020	15.20	5.04	0.99	2.37	0.99	2.37				
	2025	16.04	5.59	0.97	2.27	0.97	2.27				
	2030	17.15	6.31	0.95	2.15	0.95	2.15				
	2035	18.40	7.13	0.92	2.05	0.92	2.05				
	2040	19.83	8.06	0.89	1.94	0.89	1.94				
	2060	19.81	8.05	0.92	1.85	0.92	1.85				
	2080	18.37	7.11	0.96	1.91	0.96	1.91				
	2100	17.77	6.72	0.98	1.94	0.98	1.94				
WEU	2014	13.77	4.67	0.37	0.76	1.10	2.30				
	2020	14.26	5.04	0.48	0.99	1.09	2.23				
	2040	18.30	8.06	0.77	1.57	0.95	1.95				
	2060	18.29	8.05	0.93	2.02	0.93	2.02				
	2080	17.03	7.11	1.02	2.20	0.98	2.07				
	2100	16.51	6.72	1.07	2.11	1.03	1.99				
JKSH	2014	14.75	4.67	0.58	0.94	1.16	1.91				
	2020	15.32	5.04	0.71	1.16	1.14	1.87				
	2040	19.99	8.06	1.02	1.70	0.98	1.64				
	2060	19.98	8.05	0.97	1.69	0.97	1.69				
	2080	18.52	7.11	1.06	1.91	1.00	1.78				
	2100	17.92	6.72	1.07	1.96	1.01	1.83				
CHI	2014	13.82	4.67	0.08	0.12	1.21	1.83				
	2020	14.31	5.04	0.13	0.20	1.19	1.79				
	2040	18.39	8.06	0.27	0.41	1.02	1.57				
	2060	18.38	8.05	0.49	0.77	1.01	1.59				
	2080	17.11	7.11	0.74	1.17	1.05	1.67				
	2100	16.58	6.72	0.96	1.52	1.07	1.70				
IND	2014	14.58	4.67	0.08	0.12	1.21	1.83				
	2020	15.14	5.04	0.13	0.20	1.19	1.79				
	2040	19.71	8.06	0.27	0.41	1.02	1.57				
	2060	19.70	8.05	0.49	0.77	1.01	1.59				
	2080	18.27	7.11	0.74	1.17	1.05	1.67				
	2100	17.68	6.72	0.96	1.52	1.07	1.70				
RUS	2014	13.98	4.67	0.30	0.68	1.06	2.39				
	2020	14.49	5.04	0.38	0.84	1.05	2.31				
	2040	18.68	8.06	0.58	1.24	0.92	1.98				
	2060	18.67	8.05	0.93	1.98	0.93	1.98				
	2080	17.36	7.11	1.04	2.21	0.97	2.05				
	2100	16.82	6.72	1.06	2.21	0.99	2.06				
BRA	2014	16.37	4.67	0.22	0.35	1.11	1.78				
	2020	17.07	5.04	0.36	0.57	1.09	1.73				
	2040	22.79	8.06	0.71	1.14	0.93	1.50				
	2060	22.78	8.05	0.92	1.52	0.92	1.50				
	2080	20.99	7.11	1.07	1.79	0.96	1.59				
	2100	20.25	6.72	1.10	1.81	0.98	1.62				

Appendix Table A19: Baseline Projected Factor Prices and Marginal Products

		Baseline Simulat		-		-	
	Year	Marginal Product	Global	0	e Rate	0	oduct of Labor
	icai	of Capital	Interest Rate	Low Skilled	High Skilled	Low Skilled	High Skilled
GBR	2014	13.73	4.67	0.83	1.43	1.19	2.04
	2020	14.22	5.04	0.84	1.44	1.16	2.01
	2040	18.24	8.06	0.80	1.41	1.01	1.78
	2060	18.23	8.05	0.84	1.51	1.00	1.81
	2080	16.98	7.11	0.98	1.81	1.03	1.91
	2100	16.46	6.72	1.04	2.00	1.03	1.98
CAN	2014	13.64	4.67	0.71	1.24	1.18	2.07
	2020	14.13	5.04	0.82	1.42	1.16	2.03
	2040	18.09	8.06	1.06	1.85	1.02	1.78
	2060	18.08	8.05	1.01	1.80	1.01	1.80
	2080	16.84	7.11	1.09	1.91	1.06	1.85
	2100	16.33	6.72	1.12	1.92	1.08	1.86
MENA	2014	13.17	4.67	0.10	0.15	1.27	1.94
MILLINA	2014	13.61	4.07 5.04	0.10	0.13	1.27	1.94
	2020	17.27	5.04 8.06	0.15	0.23	1.25	1.69
	2040 2060	17.26	8.06 8.05	0.50	0.46	1.10	1.69
	2060 2080	16.12	8.05 7.11	0.54 0.79	$0.84 \\ 1.27$	1.09	1.71 1.79
	2080 2100	15.64	6.72	1.01		1.12	1.79
	2100	13.04	0.72	1.01	1.65	1.14	1.85
MEX	2014	13.32	4.67	0.25	0.55	1.09	2.43
	2020	13.78	5.04	0.38	0.84	1.08	2.38
	2040	17.53	8.06	0.72	1.63	0.93	2.14
	2060	17.53	8.05	0.91	2.22	0.91	2.22
	2080	16.35	7.11	0.95	2.30	0.94	2.34
	2100	15.87	6.72	0.96	2.34	0.95	2.39
SAF	2014	12.95	4.67	0.21	0.45	1.13	2.40
	2020	13.38	5.04	0.25	0.54	1.11	2.36
	2040	16.90	8.06	0.35	0.76	0.97	2.12
	2060	16.89	8.05	0.53	1.20	0.95	2.17
	2080	15.80	7.11	0.71	1.62	0.98	2.27
	2100	15.34	6.72	0.87	2.02	0.99	2.33
SAP	2014	13.76	4.67	0.12	0.24	1.11	2.26
	2020	14.25	5.04	0.28	0.57	1.09	2.24
	2040	18.29	8.06	0.67	1.49	0.92	2.07
	2060	18.28	8.05	0.90	2.15	0.90	2.15
	2000	17.02	7.11	0.96	2.15	0.92	2.10
	2000 2100	16.50	6.72	0.97	2.42	0.93	2.32
SLA	2014	12.05	4.67	0.17	0.37	1.08	2.33
ыA	2014	13.95		0.17		1.08	
	2020	14.46	5.04	0.21	0.45	1.06	2.27
	2040	18.62	8.06	0.32	0.67	0.93	1.98
	2060	18.61	8.05	0.49	1.09	0.92	2.03
	2080	17.31	7.11	0.69	1.58	0.94	2.15
	2100	16.77	6.72	0.87	2.01	0.95	2.21

Appendix Table A19 Continued: Baseline Projected Factor Prices and Marginal Products

		Baseline Simula	tion Results - M	Iarginal Produ	icts and Factor	r Payments	
		Marginal Product	Global	Wage	Rates	Marginal Pro	oduct of Labor
	Year	of Capital	Interest Rate	Low Skilled	High Skilled	Low Skilled	High Skilled
SOV	2014	13.17	4.67	0.12	0.25	1.14	2.33
	2020	13.61	5.04	0.17	0.35	1.12	2.28
	2040	17.27	8.06	0.29	0.60	0.98	2.03
	2060	17.26	8.05	0.49	1.07	0.96	2.10
	2080	16.12	7.11	0.71	1.65	0.97	2.25
	2100	15.64	6.72	0.89	2.10	0.97	2.34
SSA	2014	14.23	4.67	0.05	0.10	1.11	2.16
	2020	14.76	5.04	0.10	0.20	1.09	2.12
	2040	19.10	8.06	0.23	0.46	0.94	1.89
	2060	19.09	8.05	0.44	0.92	0.92	1.93
	2080	17.73	7.11	0.65	1.45	0.94	2.08
	2100	17.17	6.72	0.83	1.95	0.94	2.18
EEU	2014	13.01	4.67	0.09	0.19	1.14	2.34
	2020	13.44	5.04	0.21	0.42	1.12	2.30
	2040	17.00	8.06	0.50	1.05	0.97	2.09
	2060	16.99	8.05	0.95	2.18	0.95	2.18
	2080	15.88	7.11	1.00	2.44	0.95	2.38
	2100	15.42	6.72	1.03	2.41	0.99	2.34

Appendix Table A19 Continued: Baseline Projected Factor Prices and Marginal Products

		,	*		Supply	ge from Contemp			
	Year	GDP	Capital Stock		High Skilled	Corporate Tax	Income Tax	Pension Tax	Consumption Tax
USA	2014	6.8	24.4	-0.8	-2.3	0.0	14.5	5.5	20.4
	2020	7.4	27.1	-1.2	-2.6	0.0	15.6	6.7	21.7
	2025	7.9	29.7	-1.6	-2.8	0.0	16.1	7.9	22.1
	2030	8.7	32.7	-1.9	-2.8	0.0	16.3	9.3	21.9
	2035	9.5	36.0	-2.1	-2.9	0.0	16.5	10.4	21.9
	2040	10.4	39.2	-2.2	-2.7	0.0	15.9	11.2	21.7
	2060	10.0	39.7	-3.3	-2.8	0.0	15.9	14.2	21.0
	2080	9.1	36.8	-3.6	-2.9	0.0	18.8	12.3	23.8
	2100	9.4	36.1	-2.8	-2.7	0.0	20.5	11.6	28.5
WEU	2014	-1.7	-5.8	0.4	0.5	25.4	16.0	11.0	33.2
	2020	-1.3	-4.2	0.3	0.4	25.4	16.6	12.9	32.7
	2040	-0.5	-1.8	0.2	0.2	25.4	17.1	11.1	36.5
	2060	0.1	-0.4	0.3	0.4	25.4	16.1	6.4	36.8
	2080	0.2	-0.2	0.3	0.5	25.4	13.9	9.3	29.2
	2100	0.1	-0.5	0.2	0.6	25.4	13.5	15.2	23.5
JKSH	2014	-2.0	-6.1	0.6	0.4	35.5	12.5	2.1	18.0
	2020	-1.5	-4.7	0.3	0.6	35.5	12.9	2.7	16.6
	2040	-0.6	-2.0	0.3	0.2	35.5	12.2	5.0	12.4
	2060	-0.2	-0.7	0.0	0.2	35.5	10.1	3.9	9.2
	2080	-0.2	-0.8	0.0	0.0	35.5	8.5	2.7	8.3
	2100	-0.2	-1.0	-0.2	0.0	35.5	8.9	3.1	8.3
CHI	2014	-1.9	-5.9	0.2	0.3	26.0	1.8	1.5	48.2
	2020	-1.4	-4.2	0.3	0.3	26.0	1.7	1.9	45.0
	2040	-0.4	-1.7	0.3	0.4	26.0	1.4	2.4	33.9
	2060	0.1	-0.3	0.3	0.5	26.0	1.3	2.0	29.8
	2080	0.1	-0.3	0.3	0.5	26.0	1.2	3.6	23.8
	2100	-0.1	-0.6	0.2	0.3	26.0	1.3	3.7	22.5
IND	2014	-2.1	-6.2	0.3	0.3	34.0	4.4	1.9	27.9
	2020	-1.6	-4.5	0.2	0.3	34.0	4.4	2.4	29.6
	2040	-0.5	-1.9	0.2	0.2	34.0	4.8	1.8	33.6
	2060	-0.1	-0.5	0.2	0.2	34.0	5.6	1.0	40.1
	2080	0.0	-0.5	0.2	0.3	34.0	5.3	1.6	40.4
	2100	-0.1	-0.6	0.2	0.3	34.0	6.0	2.9	49.1
RUS	2014	-1.4	-5.5	0.6	1.0	27.9	7.1	7.4	22.8
	2020	-0.9	-4.0	0.5	0.5	27.9	8.6	10.6	29.2
	2040	-0.3	-2.0	0.0	0.3	27.9	11.9	13.0	44.6
	2060	0.0	-0.5	0.2	0.2	27.9	15.8	7.4	75.6
	2080	0.1	-0.3	0.3	0.4	27.9	16.5	8.2	94.6
	2100	0.2	-0.5	0.4	0.5	27.9	19.1	11.7	131.1
BRA	2014	-1.6	-6.6	0.6	0.8	47.3	4.7	5.9	34.4
	2020	-1.4	-4.8	0.5	0.6	47.3	4.9	7.7	40.8
	2040	-0.5	-2.1	0.4	0.4	47.3	5.9	7.4	57.0
	2060	0.1	-0.5	0.4	0.4	47.3	6.6	4.7	60.8
	2080	0.1	-0.4	0.3	0.4	47.3	6.2	9.2	68.9
	2100	-0.1	-0.6	0.2	0.3	47.3	7.6	19.8	89.5

Appendix Table A20: Corporate Tax Elimination Macro Aggregates and Tax Rates.

				Labor	Supply				
	Year	GDP	Capital Stock	Low Skilled	High Skilled	Corporate Tax	Income Tax	Pension Tax	Consumption Tax
GBR	2014	-1.2	-5.3	0.7	0.5	25.0	5.4	7.7	38.9
	2020	-1.2	-4.2	0.7	0.5	25.0	5.9	9.9	40.9
	2040	-0.5	-2.1	0.0	0.4	25.0	6.8	12.6	48.2
	2060	0.0	-0.4	0.0	0.3	25.0	8.3	6.9	69.9
	2080	0.0	-0.5	0.2	0.3	25.0	7.1	5.0	65.3
	2100	0.0	-0.4	0.4	0.4	25.0	7.1	6.6	62.2
CAN	2014	-1.7	-5.2	0.7	0.5	23.9	16.0	1.5	23.8
	2020	-1.0	-4.3	0.6	0.5	23.9	18.0	2.0	25.6
	2040	-0.5	-1.8	0.0	0.0	23.9	22.3	4.2	27.2
	2060	0.0	-1.0	0.0	0.3	23.9	23.5	4.6	28.8
	2080	-0.3	-0.9	0.0	0.0	23.9	26.4	3.3	34.1
	2100	0.0	-0.5	0.2	0.2	23.9	26.9	2.8	39.9
MENA	2014	-1.3	-5.7	0.5	0.3	17.5	2.0	0.9	15.2
VIL.1 11	2014	-1.1	-4.0	0.0	0.2	17.5	3.1	1.2	26.3
	2020	-0.5	-1.6	0.0	0.2	17.5	5.5	1.2	54.6
	2040	0.0	-0.4	0.2	0.2	17.5	6.7	1.7	72.6
	$2080 \\ 2100$	$0.1 \\ 0.1$	-0.3 -0.4	$0.3 \\ 0.3$	0.4 0.4	17.5 17.5	7.1 7.7	2.6 3.8	83.4 95.6
	2100	0.1	0.1	0.0	0.1	11.0		0.0	55.0
MEX	2014	-1.5	-5.8	0.9	0.8	19.7	4.0	2.9	13.2
	2020	-1.2	-3.6	0.7	0.6	19.7	4.1	3.4	15.1
	2040	-0.6	-1.8	0.0	0.3	19.7	4.8	4.2	19.6
	2060	-0.2	-0.5	0.0	0.1	19.7	5.0	4.2	20.5
	2080	-0.1	-0.6	0.0	0.1	19.7	5.1	7.5	21.5
	2100	-0.3	-0.7	0.0	0.0	19.7	5.8	12.8	24.1
SAF	2014	-2.0	-5.3	2.3	0.0	14.3	13.8	4.0	17.5
	2020	0.0	-4.3	0.0	0.0	14.3	13.1	5.5	18.1
	2040	0.0	-2.5	0.0	0.9	14.3	12.3	12.9	17.5
	2060	-0.8	-0.9	0.0	0.0	14.3	12.1	17.5	16.1
	2080	0.0	-0.6	0.0	0.0	14.3	14.3	17.1	17.9
	2100	0.0	-0.6	0.0	0.0	14.3	15.2	15.4	20.4
SAP	2014	-2.0	-5.8	0.3	0.3	25.3	2.8	0.6	20.5
	2020	-1.3	-4.2	0.2	0.4	25.3	2.7	0.6	19.1
	2040	-0.4	-1.8	0.2	0.3	25.3	3.2	0.5	18.9
	2060	-0.1	-0.5	0.2	0.2	25.3	3.2	0.6	22.0
	2080	-0.1	-0.5	0.1	0.2	25.3	3.4	1.7	22.9
	2100	-0.1	-0.7	0.1	0.2	25.3	3.9	2.6	22.9
SLA	2014	-1.8	-5.7	0.5	0.4	27.5	1.6	3.6	25.8
JUA	2014	-1.0	-4.3	0.0	0.4	27.5	1.0	3.0 4.4	25.8 31.6
	2020	-1.2	-4.3	0.0	0.4	27.5	2.2	4.4	41.3
	2040				0.2		2.2		
	2080	-0.1	-0.6	0.1		27.5		4.0	43.1
		-0.1	-0.5	0.1	0.2	27.5	2.0	4.9	43.3
	2100	-0.1	-0.7	0.1	0.2	27.5	2.0	7.5	52.0

Appendix Table A20 Continued: Corporate Tax Elimination Macro Aggregates and Tax Rates

				Labor	Supply				
	Year	GDP	Capital Stock	Low Skilled	High Skilled	Corporate Tax	Income Tax	Pension Tax	Consumption Tax
SOV	2014	-2.0	-5.4	0.0	0.0	17.5	7.0	2.1	33.6
	2020	0.0	-3.4	0.0	1.7	17.5	8.4	3.1	42.2
	2040	-1.0	-1.2	0.0	0.0	17.5	9.0	3.5	48.4
	2060	0.0	-0.5	0.4	0.4	17.5	8.1	1.1	41.5
	2080	0.0	-0.4	0.2	0.4	17.5	6.7	1.2	34.7
	2100	0.0	-0.6	0.3	0.3	17.5	8.0	2.6	41.6
SSA	2014	-1.6	-6.0	0.0	0.0	30.5	3.6	0.1	21.8
	2020	-1.7	-4.8	0.0	0.0	30.5	3.9	0.1	27.1
	2040	-0.5	-1.9	0.1	0.3	30.5	4.7	0.1	38.9
	2060	0.0	-0.5	0.2	0.3	30.5	4.7	0.1	39.5
	2080	0.0	-0.4	0.2	0.4	30.5	4.5	0.1	35.0
	2100	0.0	-0.6	0.2	0.4	30.5	4.1	0.2	29.8
EEU	2014	-2.4	-4.9	0.0	0.0	15.1	7.5	10.3	32.3
	2020	-2.2	-2.3	0.0	0.0	15.1	8.1	12.9	34.9
	2040	-1.1	-1.3	0.0	0.9	15.1	8.5	9.3	43.9
	2060	0.0	-0.7	0.0	0.5	15.1	8.3	6.9	45.4
	2080	0.0	0.0	0.0	0.5	15.1	11.0	16.2	49.3
	2100	0.0	-0.6	0.3	0.3	15.1	12.4	14.9	63.7

Appendix Table A20 Continued: Corporate Tax Elimination Macro Aggregates and Tax Rates

		Corporate Tax Eli	°				- J+ - 6 T - 1
	Year	Marginal Product	Global		e Rate		oduct of Labor
	rear	of Capital	Interest Rate	Low Skilled	High Skilled	Low Skilled	High Skilled
USA	2014	12.59	5.11	1.00	2.50	1.00	2.50
	2020	12.86	5.37	1.00	2.43	1.00	2.43
	2025	13.37	5.87	0.99	2.34	0.99	2.34
	2030	14.06	6.56	0.97	2.24	0.97	2.24
	2035	14.84	7.33	0.95	2.14	0.95	2.14
	2040	15.74	8.24	0.93	2.04	0.93	2.04
	2060	15.61	8.11	0.97	1.95	0.97	1.95
	2080	14.66	7.17	1.01	2.00	1.01	2.00
	2100	14.28	6.78	1.02	2.02	1.02	2.02
WEU	2014	14.34	5.11	0.33	0.69	1.00	2.09
	2020	14.69	5.37	0.44	0.90	0.99	2.03
	2040	18.54	8.24	0.71	1.44	0.88	1.80
	2060	18.38	8.11	0.86	1.87	0.86	1.87
	2080	17.11	7.17	0.90	1.91	0.90	1.91
	2100	16.59	6.78	0.95	1.84	0.95	1.84
JKSH	2014	15.42	5.11	0.52	0.86	1.05	1.73
	2014	15.82	5.37	0.65	1.06	1.04	1.75
	2020	20.27	8.24	0.94	1.56	0.90	1.51
	2040	20.08	8.11	0.89	1.56	0.89	1.56
	2080	18.61	7.17	0.92	1.65	0.92	1.65
	2100	18.02	6.78	0.93	1.69	0.93	1.69
CHI	2014	14.40	5.11	0.14	0.29	1.01	2.04
om	2014	14.40	5.37	0.14	0.25	0.99	2.04
	2020	18.63	8.24	0.23	1.36	0.35	2.03
	2040	18.46	8.11	0.04	2.03	0.81	2.03
	2000	17.18	7.17	0.82	2.03	0.82	2.03
	2100	16.67	6.78	0.83	2.22	0.83	2.22
							1.00
IND	2014	15.23	5.11	0.07	0.11	1.09	1.66
	2020	15.63	5.37	0.12	0.18	1.08	1.63
	2040	19.98	8.24	0.25	0.38	0.94	1.44
	2060	19.79	8.11	0.46	0.71	0.94	1.47
	2080	18.35	7.17	0.65	1.04	0.97	1.55
	2100	17.78	6.78	0.85	1.35	0.99	1.57
RUS	2014	14.58	5.11	0.28	0.62	0.96	2.16
	2020	14.94	5.37	0.35	0.77	0.96	2.10
	2040	18.93	8.24	0.53	1.14	0.85	1.83
	2060	18.75	8.11	0.86	1.83	0.86	1.83
	2080	17.44	7.17	0.89	1.90	0.89	1.90
	2100	16.91	6.78	0.92	1.90	0.92	1.90
BRA	2014	17.19	5.11	0.20	0.32	1.00	1.61
	2020	17.68	5.37	0.33	0.52	0.99	1.57
	2040	23.13	8.24	0.65	1.04	0.85	1.38
	2060	22.90	8.11	0.85	1.41	0.85	1.41
	2080	21.10	7.17	0.89	1.47	0.89	1.47
	2100	20.37	6.78	0.90	1.50	0.90	1.50

Appendix Table A21: Corporate Tax Elimination Projected Factor Prices and Marginal Products

		Marginal Product	Global	Wage	e Rate	Marginal Pro	oduct of Labo
	Year	of Capital	Interest Rate	Low Skilled	High Skilled	Low Skilled	High Skilled
GBR	2014	14.31	5.11	0.76	1.30	1.08	1.85
	2020	14.66	5.37	0.76	1.32	1.06	1.83
	2040	18.48	8.24	0.74	1.30	0.93	1.64
	2060	18.32	8.11	0.78	1.40	0.93	1.67
	2080	17.05	7.17	0.85	1.58	0.95	1.77
	2100	16.54	6.78	0.91	1.75	0.96	1.83
CAN	2014	14.21	5.11	0.64	1.13	1.07	1.88
	2020	14.55	5.37	0.74	1.29	1.06	1.85
	2040	18.33	8.24	0.97	1.70	0.94	1.64
	2060	18.16	8.11	0.94	1.66	0.94	1.66
	2000	16.92	7.17	0.98	1.71	0.94	1.71
	2100	16.41	6.78	1.00	1.72	1.00	1.72
MENA	2014	13.69	5.11	0.09	0.14	1.16	1.76
	2014	14.01	5.37	0.14	0.21	1.10	1.70
	2020	17.49	8.24	0.27	0.42	1.01	1.55
	2040	17.33	8.11	0.50	0.42	1.01	1.55
	2000	16.19	7.17	0.50	1.12	1.01	1.65
	2100	15.72	6.78	0.91	1.12	1.04	1.69
MEX	2014	13.86	5.11	0.22	0.50	0.99	2.20
	2020	14.18	5.37	0.35	0.77	0.98	2.17
	2040	17.76	8.24	0.66	1.50	0.86	1.97
	2060	17.60	8.11	0.84	2.05	0.84	2.05
	2080	16.42	7.17	0.87	2.17	0.87	2.17
	2100	15.95	6.78	0.88	2.21	0.88	2.21
SAF	2014	13.46	5.11	0.19	0.41	1.03	2.18
	2020	13.76	5.37	0.23	0.49	1.02	2.15
	2040	17.11	8.24	0.33	0.70	0.89	1.95
	2060	16.97	8.11	0.49	1.11	0.88	2.01
	2080	15.86	7.17	0.65	1.50	0.91	2.10
	2100	15.41	6.78	0.81	1.89	0.92	2.15
SAP	2014	14.34	5.11	0.11	0.21	1.01	2.05
	2020	14.69	5.37	0.25	0.52	0.99	2.04
	2040	18.53	8.24	0.62	1.37	0.85	1.90
	2060	18.36	8.11	0.83	1.98	0.83	1.98
	2080	17.09	7.17	0.85	2.11	0.85	2.11
	2100	16.58	6.78	0.86	2.15	0.86	2.15
SLA	2014	14.54	5.11	0.16	0.33	0.98	2.11
	2014	14.90	5.37	0.10	0.41	0.98	2.11
	2020	14.90	8.24	0.19	0.41 0.62	0.97	1.83
	2040	18.69	8.11	0.29	1.01	0.85	1.85
	2060 2080	17.39	8.11 7.17	0.46	1.01	0.85	1.87
	2080 2100	16.86	6.78	0.61		0.87	2.04
	2100	10.80	0.78	0.77	1.78	0.88	2.04

Appendix Table A21 Continued: Corporate Tax Elimination Projected Factor Prices and Marginal Products

		Corporate Tax El	imination Proje	cted Factor Pi	rices and Margi	inal Products	
		Marginal Product	Global	Wage	Rates	Marginal Pro	oduct of Labor
	Year	of Capital	Interest Rate	Low Skilled	High Skilled	Low Skilled	High Skilled
SOV	2014	13.69	5.11	0.11	0.23	1.03	2.12
	2020	14.01	5.37	0.16	0.32	1.02	2.08
	2040	17.49	8.24	0.27	0.55	0.90	1.87
	2060	17.33	8.11	0.45	0.99	0.89	1.94
	2080	16.19	7.17	0.62	1.43	0.90	2.08
	2100	15.72	6.78	0.78	1.87	0.90	2.16
SSA	2014	14.85	5.11	0.04	0.09	1.01	1.95
	2020	15.23	5.37	0.09	0.18	0.99	1.93
	2040	19.36	8.24	0.21	0.42	0.86	1.73
	2060	19.18	8.11	0.40	0.85	0.85	1.79
	2080	17.81	7.17	0.58	1.28	0.87	1.92
	2100	17.26	6.78	0.74	1.73	0.87	2.02
EEU	2014	13.52	5.11	0.08	0.17	1.04	2.13
	2020	13.82	5.37	0.19	0.38	1.03	2.10
	2040	17.21	8.24	0.46	0.96	0.90	1.92
	2060	17.06	8.11	0.88	2.01	0.88	2.01
	2080	15.94	7.17	0.88	2.20	0.88	2.20
	2100	15.49	6.78	0.91	2.16	0.91	2.16

Appendix Table A21 Continued: Corporate Tax Elimination Projected Factor Prices and Marginal Products

				Labor	Supply				
	Year	GDP	Capital Stock	Low Skilled	High Skilled	Corporate Tax	Income Tax	Pension Tax	Consumption Tax
USA	2014	7.9	17.9	3.2	3.1	16.1	11.5	5.5	33.1
	2020	7.2	19.5	1.5	0.7	16.1	12.9	6.8	33.1
	2025	6.6	20.7	0.2	-1.0	16.1	13.0	8.1	33.1
	2030	6.7	22.3	-0.4	-2.1	16.1	12.1	9.7	33.1
	2035	6.7	23.9	-1.0	-3.3	16.1	11.4	10.8	33.1
	2040	6.4	24.9	-1.5	-4.4	16.1	9.7	11.7	33.1
	2060	2.6	20.1	-4.9	-9.1	16.1	6.2	14.8	33.1
	2080	-1.4	13.9	-8.2	-12.3	16.1	8.1	12.8	33.1
	2100	-1.1	13.6	-7.4	-11.6	16.1	13.6	11.6	33.1
NEU	2014	-1.2	-4.2	0.4	0.4	25.4	16.0	11.0	33.0
	2020	-0.2	-1.3	0.3	0.4	25.4	16.7	12.8	32.8
	2040	1.2	2.8	0.5	0.4	25.4	17.3	11.0	37.1
	2060	1.8	3.7	1.0	1.1	25.4	16.3	6.4	37.5
	2080	2.3	3.7	1.6	1.9	25.4	14.2	9.3	30.0
	2100	2.4	3.4	1.9	2.4	25.4	13.9	15.2	24.2
JKSH	2014	-1.0	-4.2	0.6	0.8	35.5	12.5	2.1	18.1
	2020	0.0	-1.0	0.6	0.8	35.5	13.1	2.7	16.9
	2040	2.0	3.6	1.2	1.4	35.5	12.6	4.9	12.7
	2060	2.5	4.8	1.7	2.2	35.5	10.5	3.8	9.6
	2080	2.2	3.9	1.8	2.2	35.5	8.9	2.8	8.7
	2100	2.0	3.1	1.4	2.0	35.5	9.3	3.1	8.6
CHI	2014	-1.2	-4.2	0.2	0.3	26.0	1.8	1.5	48.2
	2020	-0.3	-1.3	0.3	0.4	26.0	1.7	1.9	45.3
	2040	1.3	2.9	0.4	0.6	26.0	1.4	2.3	34.6
	2060	2.4	4.1	1.2	1.9	26.0	1.3	2.0	30.8
	2080	2.5	3.7	1.2	2.4	26.0	1.2	3.6	24.7
	2100	1.7	2.5	0.8	1.9	26.0	1.3	3.8	23.3
IND	2014	-1.6	-4.8	0.0	0.0	34.0	4.4	1.9	27.3
	2020	-0.8	-1.6	0.0	0.0	34.0	4.4	2.4	28.9
	2040	0.7	2.3	-0.1	-0.1	34.0	4.7	1.7	33.0
	2060	0.8	2.6	-0.1	-0.1	34.0	5.6	1.0	39.6
	2080	0.7	2.0	0.0	-0.1	34.0	5.3	1.6	40.0
	2100	0.5	1.4	0.0	0.0	34.0	6.0	2.9	48.8
RUS	2014	-1.4	-4.5	0.0	0.0	27.9	7.1	7.4	22.6
	2020	-0.4	-1.5	0.0	0.0	27.9	8.6	10.5	29.2
	2040	0.7	2.5	-0.4	0.0	27.9	12.1	12.9	45.1
	2060	1.0	2.7	0.0	0.0	27.9	15.9	7.4	76.3
	2080	0.8	2.2	0.3	0.3	27.9	16.6	8.2	95.4
	2100	0.8	1.6	0.3	0.4	27.9	19.2	11.7	132.1
BRA	2014	-1.6	-5.4	0.0	0.0	47.3	4.6	5.9	33.5
	2020	-0.5	-2.1	0.0	0.0	47.3	4.9	7.6	40.0
	2040	0.7	2.4	-0.2	-0.3	47.3	5.9	7.4	56.2
	2060	1.0	2.9	0.0	-0.1	47.3	6.6	4.7	60.2
	2080	1.1	2.4	0.2	0.2	47.3	6.2	9.3	68.9
	2100	0.8	1.8	0.2	0.4	47.3	7.6	19.8	89.9

Appendix Table A22: BCFT Reform Macro Aggregates and Tax Rates

				Labor	Supply				
	Year	GDP	Capital Stock	Low Skilled	High Skilled	Corporate Tax	Income Tax	Pension Tax	Consumption Tax
GBR	2014	-0.6	-3.5	0.7	0.5	25.0	5.5	7.7	39.0
	2020	0.0	-1.2	0.7	0.5	25.0	6.0	9.8	41.3
	2040	1.1	2.8	0.0	0.8	25.0	6.9	12.5	49.4
	2060	1.4	3.0	0.3	0.5	25.0	8.4	6.9	71.4
	2080	1.0	2.4	0.4	0.6	25.0	7.2	5.1	66.2
	2100	1.0	1.9	0.5	0.7	25.0	7.1	6.6	63.0
CAN	2014	-0.6	-3.5	0.7	0.5	23.9	16.0	1.5	23.8
	2020	0.0	-1.1	0.6	0.5	23.9	18.2	2.0	25.8
	2040	1.8	3.6	1.0	1.1	23.9	22.9	4.1	27.9
	2060	2.2	3.8	1.6	1.7	23.9	24.3	4.6	29.9
	2080	1.5	3.0	1.1	1.2	23.9	27.2	3.3	35.5
	2100	1.4	2.3	1.0	1.2	23.9	27.6	2.8	41.3
MENA	2014	-1.1	-4.1	0.0	0.3	17.5	2.0	0.9	15.0
	2020	-0.4	-1.5	0.0	0.0	17.5	3.1	1.2	26.2
	2020	0.7	2.4	0.1	0.1	17.5	5.6	1.7	54.9
	2040	1.0	2.4	0.1	0.2	17.5	6.8	1.7	72.9
	2000	0.9	2.1	0.2	0.2	17.5	7.1	2.6	83.8
	2100	0.5	1.5	0.2	0.3	17.5	7.7	3.8	95.8
	2100	0.7	1.0	0.5	0.5	17.5	1.1	5.0	55.6
MEX	2014	-1.5	-4.3	0.0	0.0	19.7	4.0	2.9	13.0
	2020	-0.6	-1.2	0.0	0.0	19.7	4.1	3.4	14.9
	2040	0.6	2.1	-0.3	-0.3	19.7	4.8	4.2	19.5
	2060	0.9	2.7	0.0	0.1	19.7	5.1	4.2	20.6
	2080	0.9	2.2	0.2	0.4	19.7	5.1	7.5	21.7
	2100	0.7	1.5	0.2	0.4	19.7	5.8	12.9	24.4
SAF	2014	-2.0	-5.3	0.0	0.0	14.3	13.7	4.1	17.3
	2020	0.0	-1.4	0.0	0.0	14.3	13.1	5.4	18.0
	2040	1.1	2.5	0.0	0.9	14.3	12.5	12.8	17.6
	2060	0.8	2.7	0.0	0.0	14.3	12.3	17.5	16.3
	2080	1.1	1.7	0.0	0.0	14.3	14.5	17.2	18.2
	2100	0.6	1.6	0.0	0.3	14.3	15.3	15.5	20.6
SAP	2014	-1.4	-4.2	0.0	0.3	25.3	2.8	0.6	20.2
	2020	-0.6	-1.6	0.0	0.0	25.3	2.7	0.6	18.9
	2040	0.7	2.2	-0.1	-0.2	25.3	3.2	0.5	18.8
	2060	1.0	2.7	0.1	0.1	25.3	3.2	0.6	22.0
	2080	0.8	2.1	0.2	0.1	25.3	3.4	1.7	23.1
	2100	0.6	1.4	0.1	0.1	25.3	3.9	2.6	23.1
SLA	2014	-1.8	-4.3	0.0	0.0	27.5	1.6	3.6	25.4
	2020	-0.4	-1.6	0.0	0.0	27.5	1.8	4.4	31.2
	2020	0.7	2.3	0.0	-0.2	27.5	2.2	4.5	41.3
	2040	0.8	2.3	0.0	-0.2	27.5	2.3	4.0	43.2
	2000	0.8	1.9	0.0	0.0	27.5	2.0	4.0	43.4
	2000	0.6	1.5	0.0	0.0	27.5	2.0	7.5	52.3
	2100	0.0	1.4	0.1	0.1	21.0	2.0	1.5	02.0

Appendix Table A22 Continued: BCFT Reform Macro Aggregates and Tax Rates

				Labor	Supply				
	Year	GDP	Capital Stock	Low Skilled	High Skilled	Corporate Tax	Income Tax	Pension Tax	Consumption Tax
SOV	2014	-2.0	-3.6	0.0	0.0	17.5	7.0	2.1	33.1
	2020	0.0	-1.7	0.0	0.0	17.5	8.4	3.1	41.9
	2040	1.0	2.4	0.0	0.0	17.5	9.1	3.5	48.6
	2060	0.9	2.5	0.0	0.4	17.5	8.2	1.1	41.7
	2080	0.8	2.0	0.0	0.2	17.5	6.8	1.2	34.9
	2100	0.8	1.6	0.3	0.6	17.5	8.1	2.6	42.0
SSA	2014	-1.6	-4.3	0.0	0.0	30.5	3.6	0.1	21.8
	2020	-0.6	-1.8	0.0	0.0	30.5	4.0	0.1	27.2
	2040	1.1	2.6	0.1	0.3	30.5	4.7	0.1	39.2
	2060	1.2	3.0	0.3	0.4	30.5	4.8	0.1	39.8
	2080	1.0	2.3	0.3	0.4	30.5	4.5	0.1	35.1
	2100	0.8	1.7	0.3	0.4	30.5	4.0	0.2	29.9
EEU	2014	-2.4	-2.4	0.0	0.0	15.1	7.5	10.3	32.0
	2020	-2.2	0.0	0.0	0.0	15.1	8.2	12.8	34.7
	2040	0.0	2.6	0.0	0.0	15.1	8.5	9.2	44.1
	2060	1.2	2.8	0.6	0.5	15.1	8.4	6.9	46.0
	2080	1.4	3.0	0.9	0.9	15.1	11.1	16.3	50.4
	2100	1.1	1.7	0.8	0.5	15.1	12.6	15.0	64.9

Appendix Table A22 Continued: BCFT Reform Macro Aggregates and Tax Rates

			m Projected Fa		0		1
	Year	Marginal Product	Global		Rate		oduct of Labor
	reaf	of Capital	Interest Rate	Low Skilled	High Skilled	Low Skilled	High Skilled
USA	2014	13.42	4.98	1.00	2.46	1.00	2.46
	2020	13.63	5.16	1.00	2.41	1.00	2.41
	2025	14.17	5.60	0.99	2.33	0.99	2.33
	2030	14.94	6.24	0.97	2.24	0.97	2.24
	2035	15.82	6.98	0.94	2.15	0.94	2.15
	2040	16.86	7.85	0.92	2.06	0.92	2.06
	2060	16.83	7.83	0.94	1.99	0.94	1.99
	2080	15.78	6.95	0.98	2.04	0.98	2.04
	2100	15.38	6.62	0.99	2.06	0.99	2.06
WEU	2014	14.18	4.98	0.34	0.72	1.03	2.16
	2020	14.41	5.16	0.46	0.94	1.03	2.12
	2040	18.03	7.85	0.74	1.51	0.92	1.88
	2060	17.99	7.83	0.90	1.94	0.90	1.94
	2080	16.82	6.95	0.94	1.99	0.94	1.99
	2100	16.37	6.62	0.99	1.91	0.99	1.91
JKSH	2014	15.23	4.98	0.54	0.89	1.09	1.79
011011	2014	15.49	5.16	0.54	1.10	1.03	1.75
	2020	19.68	7.85	0.07	1.63	0.95	1.58
	2040	19.63	7.83	0.99	1.62	0.95	1.62
	2000	19.03	6.95	0.95	1.02	0.95	1.02
	2080 2100	18.28	6.95 6.62	0.96	1.71	0.96	1.71
	2100	17.70	0.02	0.97	1.70	0.97	1.70
CHI	2014	14.24	4.98	0.15	0.30	1.05	2.11
	2020	14.47	5.16	0.29	0.60	1.03	2.11
	2040	18.11	7.85	0.67	1.42	0.89	1.95
	2060	18.07	7.83	0.85	2.11	0.85	2.11
	2080	16.89	6.95	0.86	2.29	0.86	2.29
	2100	16.44	6.62	0.87	2.34	0.87	2.34
IND	2014	15.05	4.98	0.07	0.11	1.13	1.72
	2020	15.31	5.16	0.13	0.19	1.12	1.70
	2040	19.40	7.85	0.26	0.39	0.98	1.51
	2060	19.35	7.83	0.47	0.74	0.98	1.53
	2080	18.03	6.95	0.68	1.08	1.01	1.61
	2100	17.52	6.62	0.88	1.40	1.02	1.63
RUS	2014	14.41	4.98	0.29	0.64	1.00	2.24
	2020	14.65	5.16	0.36	0.80	1.00	2.19
	2040	18.39	7.85	0.56	1.19	0.89	1.91
	2060	18.35	7.83	0.89	1.91	0.89	1.91
	2080	17.14	6.95	0.93	1.97	0.93	1.97
	2100	16.67	6.62	0.95	1.97	0.95	1.97
BRA	2014	16.96	4.98	0.20	0.33	1.04	1.67
	2014	17.28	5.16	0.20	0.54	1.04	1.64
	2020	22.40	7.85	0.68	1.09	0.89	1.44
	2040	22.40	7.83	0.08	1.09	0.89	1.44
	2000	22.35	6.95	0.89	1.47	0.89	1.47
	2100	20.05	6.62	0.92	1.55	0.92	1.55
	2100	20.05	0.02	0.34	1.00	0.34	1.00

Appendix Table A23: BCFT Reform Projected Factor Prices and Marginal Products

			m Projected Fa				1
	Year	Marginal Product	Global		e Rate	-	oduct of Labor
	rour	of Capital	Interest Rate	Low Skilled	High Skilled	Low Skilled	High Skilled
GBR	2014	14.15	4.98	0.78	1.35	1.12	1.92
	2020	14.37	5.16	0.79	1.37	1.11	1.91
	2040	17.97	7.85	0.77	1.35	0.97	1.71
	2060	17.93	7.83	0.81	1.45	0.97	1.74
	2080	16.77	6.95	0.89	1.64	0.99	1.83
	2100	16.32	6.62	0.95	1.81	0.99	1.90
CAN	2014	14.05	4.98	0.67	1.17	1.11	1.95
	2020	14.28	5.16	0.77	1.35	1.11	1.92
	2040	17.82	7.85	1.02	1.78	0.98	1.71
	2060	17.78	7.83	0.98	1.73	0.98	1.73
	2080	16.63	6.95	1.02	1.77	1.02	1.77
	2100	16.19	6.62	1.04	1.78	1.04	1.78
MENA	2014	13.54	4.98	0.09	0.14	1.20	1.82
THEFT	2014	13.75	4.98 5.16	0.09	0.14 0.22	1.20	1.82
	2020	17.02	7.85	0.19	0.22	1.15	1.62
	2040	16.99	7.83	0.29	0.44 0.81	1.05	1.62
	2000	15.93	6.95	0.52	1.16	1.05	1.72
	2100	15.52	6.62	0.73	1.10	1.03	1.72
	2100	15.52	0.02	0.94	1.51	1.09	1.75
MEX	2014	13.71	4.98	0.23	0.52	1.03	2.29
	2020	13.92	5.16	0.36	0.80	1.02	2.26
	2040	17.28	7.85	0.69	1.57	0.90	2.06
	2060	17.25	7.83	0.88	2.13	0.88	2.13
	2080	16.16	6.95	0.90	2.25	0.90	2.25
	2100	15.74	6.62	0.91	2.29	0.91	2.29
SAF	2014	13.32	4.98	0.20	0.42	1.06	2.26
	2020	13.52	5.16	0.24	0.51	1.06	2.24
	2040	16.66	7.85	0.34	0.73	0.93	2.04
	2060	16.63	7.83	0.51	1.15	0.92	2.09
	2080	15.61	6.95	0.68	1.56	0.95	2.18
	2100	15.22	6.62	0.84	1.96	0.95	2.23
SAP	2014	14.17	4.98	0.11	0.22	1.05	2.12
	2020	14.40	5.16	0.26	0.54	1.03	2.13
	2040	18.02	7.85	0.65	1.43	0.88	1.99
	2060	17.98	7.83	0.86	2.07	0.86	2.07
	2080	16.81	6.95	0.88	2.19	0.88	2.19
	2100	16.36	6.62	0.90	2.23	0.90	2.23
SLA	2014	14.38	4.98	0.16	0.35	1.01	2.19
	2014	14.55	5.16	0.10	0.33	1.01	2.15
	2020	18.34	7.85	0.20	0.43	0.89	1.91
	2040	18.30	7.83	0.30	1.05	0.89	1.91
	2000	17.09	6.95	0.47	1.05	0.88	2.07
	2080	16.63	6.62	0.80	1.40	0.90	2.07
	2100	10.05	0.02	0.00	1.00	0.91	2.12

Appendix Table A23 Continued: House Tax Projected Factor Prices and Marginal Products

		Manada al Davada at	0		nd Marginal Pr		J
	Year	Marginal Product	Global	wage	Rates	Marginal Pro	oduct of Labor
	rear	of Capital	Interest Rate	Low Skilled	High Skilled	Low Skilled	High Skilled
SOV	2014	13.54	4.98	0.12	0.24	1.07	2.19
	2020	13.75	5.16	0.16	0.33	1.06	2.17
	2040	17.02	7.85	0.28	0.58	0.94	1.96
	2060	16.99	7.83	0.47	1.03	0.92	2.02
	2080	15.93	6.95	0.64	1.49	0.93	2.16
	2100	15.52	6.62	0.81	1.94	0.93	2.24
SSA	2014	14.68	4.98	0.05	0.09	1.05	2.02
	2020	14.92	5.16	0.10	0.19	1.03	2.01
	2040	18.81	7.85	0.22	0.44	0.90	1.81
	2060	18.76	7.83	0.42	0.88	0.89	1.86
	2080	17.51	6.95	0.60	1.33	0.90	2.00
	2100	17.02	6.62	0.77	1.79	0.90	2.09
EEU	2014	13.37	4.98	0.09	0.18	1.08	2.20
	2020	13.58	5.16	0.19	0.40	1.07	2.18
	2040	16.76	7.85	0.48	1.01	0.94	2.01
	2060	16.72	7.83	0.91	2.10	0.91	2.10
	2080	15.69	6.95	0.92	2.28	0.92	2.28
	2100	15.30	6.62	0.95	2.24	0.95	2.24

Appendix Table A23 Continued: BCFT Reform Projected Factor Prices and Marginal Products

				Labor	Supply				
	Year	GDP	Capital Stock		High Skilled	Corporate Tax	Income Tax	Pension Tax	Consumption Tax
USA	2014	3.8	4.8	3.2	3.5	16.1	11.0	5.5	33.1
	2020	3.7	8.6	1.2	0.7	16.1	12.5	6.8	33.1
	2025	3.5	10.8	-0.2	-1.2	16.1	12.5	8.0	33.1
	2030	3.4	12.9	-1.2	-2.6	16.1	11.5	9.6	33.1
	2035	3.3	14.5	-2.0	-4.1	16.1	10.6	10.7	33.1
	2040	2.7	15.3	-3.0	-5.7	16.1	8.8	11.6	33.1
	2060	-1.2	12.0	-7.3	-11.1	16.1	5.0	14.8	33.1
	2080	-4.8	6.8	-10.4	-14.2	16.1	6.7	12.6	33.1
	2100	-3.5	7.9	-8.6	-12.7	16.1	12.5	11.4	33.1
WEU	2014	-1.1	-4.0	0.5	0.6	11.8	16.3	11.0	35.5
	2020	0.6	1.3	0.2	0.3	11.8	17.0	12.7	35.1
	2040	3.6	10.8	-0.1	-0.2	11.8	17.9	10.8	40.0
	2060	4.4	13.3	-0.1	-0.1	11.8	16.9	6.3	40.4
	2080	4.3	12.6	-0.1	0.6	11.8	14.7	9.3	32.2
	2100	3.9	11.5	-0.6	1.0	11.8	14.2	15.3	25.6
JKSH	2014	0.5	1.7	0.0	-0.4	16.5	13.1	2.1	19.8
	2020	2.2	7.8	-0.6	-0.6	16.5	13.6	2.7	18.2
	2040	5.4	19.3	-1.2	-1.6	16.5	12.8	4.9	13.4
	2060	5.1	20.5	-2.9	-2.7	16.5	10.7	3.8	10.0
	2080	4.5	18.3	-3.2	-3.1	16.5	8.9	2.7	9.0
	2100	4.2	17.2	-3.3	-3.1	16.5	9.2	3.1	8.9
CHI	2014	-0.9	-3.5	0.5	0.8	12.1	1.9	1.5	56.1
	2020	1.0	2.1	0.5	0.7	12.1	1.9	1.9	52.4
	2040	4.5	12.1	0.5	0.8	12.1	1.6	2.3	40.6
	2060	5.1	14.4	0.4	0.6	12.1	1.4	1.9	34.8
	2080	4.3	12.9	0.0	0.1	12.1	1.3	3.6	26.8
	2100	3.7	11.7	-0.3	-0.3	12.1	1.4	3.8	24.9
IND	2014	0.7	1.2	0.3	0.3	15.8	4.9	1.9	32.1
	2020	2.6	7.5	0.2	0.3	15.8	4.9	2.4	34.1
	2040	6.3	19.4	0.0	0.0	15.8	5.3	1.7	39.6
	2060	7.0	21.9	-0.1	-0.2	15.8	6.2	1.0	46.8
	2080	6.6	20.3	-0.1	-0.2	15.8	5.9	1.6	47.4
	2100	6.2	19.2	-0.1	-0.2	15.8	6.6	2.9	56.6
RUS	2014	0.0	-1.5	1.1	2.0	13.0	7.8	7.5	26.3
	2020	1.3	3.5	1.1	1.0	13.0	9.4	10.5	33.4
	2040	4.2	13.7	0.4	0.6	13.0	13.1	12.7	52.1
	2060	5.5	16.1	0.4	0.5	13.0	17.0	7.3	87.5
	2080	5.5	15.6	0.9	1.1	13.0	17.7	8.2	109.4
	2100	5.8	14.8	1.1	1.4	13.0	20.2	11.7	150.4
BRA	2014	4.8	13.9	0.0	0.0	22.0	4.9	5.9	37.7
	2020	6.4	20.9	-0.5	-0.3	22.0	5.2	7.6	44.7
	2040	10.7	37.8	-1.0	-1.4	22.0	6.3	7.2	63.6
	2060	11.2	40.3	-1.5	-1.9	22.0	7.0	4.6	68.1
	2080	10.4	37.3	-1.7	-2.2	22.0	6.7	9.3	78.1
	2100	10.2	36.1	-1.4	-1.9	22.0	8.1	19.8	99.7

Appendix Table A24: Global Tax Matching Macro Aggregates and Tax Rates

GBR CAN MENA MEX	Year 2014 2020 2040 2060 2080 2100 2014 2020 2040 2060 2080 2100	GDP 0.0 1.2 3.8 5.2 5.4 5.5 -1.2 0.5 3.7 4.4 4.0	Capital Stock -2.9 1.8 10.6 13.9 13.5 13.0 -4.6 0.5 10.3	Low Skilled 1.5 1.4 0.0 0.7 1.1 1.6 0.7	High Skilled 1.5 1.5 0.8 0.8 1.6 1.9	Corporate Tax 11.6 11.6 11.6 11.6 11.6 11.6 11.6	5.8 6.3 7.2 8.8 7.9	Pension Tax 7.7 9.8 12.3 6.7	Consumption Tax 44.7 46.7 55.4
CAN MENA MEX	2020 2040 2060 2080 2100 2014 2020 2040 2060 2080	$1.2 \\ 3.8 \\ 5.2 \\ 5.4 \\ 5.5 \\ -1.2 \\ 0.5 \\ 3.7 \\ 4.4 \\$	$1.8 \\ 10.6 \\ 13.9 \\ 13.5 \\ 13.0 \\ -4.6 \\ 0.5 \\ 10.3 \\$	1.4 0.0 0.7 1.1 1.6 0.7	$1.5 \\ 0.8 \\ 0.8 \\ 1.6$	11.6 11.6 11.6 11.6	6.3 7.2 8.8	9.8 12.3	$46.7 \\ 55.4$
CAN MENA MEX	2040 2060 2080 2100 2014 2020 2040 2060 2080	3.8 5.2 5.4 5.5 -1.2 0.5 3.7 4.4	$10.6 \\ 13.9 \\ 13.5 \\ 13.0 \\ -4.6 \\ 0.5 \\ 10.3 \\ $	0.0 0.7 1.1 1.6 0.7	$ \begin{array}{c} 0.8 \\ 0.8 \\ 1.6 \end{array} $	$11.6 \\ 11.6 \\ 11.6$	7.2 8.8	12.3	55.4
CAN MENA MEX	2060 2080 2100 2014 2020 2040 2060 2080	5.2 5.4 5.5 -1.2 0.5 3.7 4.4	$ 13.9 \\ 13.5 \\ 13.0 \\ -4.6 \\ 0.5 \\ 10.3 $	0.7 1.1 1.6 0.7	$0.8 \\ 1.6$	$11.6 \\ 11.6$	8.8		
CAN MENA MEX	2080 2100 2014 2020 2040 2060 2080	5.4 5.5 -1.2 0.5 3.7 4.4	$ \begin{array}{r} 13.5 \\ 13.0 \\ -4.6 \\ 0.5 \\ 10.3 \\ \end{array} $	$ \begin{array}{c} 1.1 \\ 1.6 \\ 0.7 \end{array} $	1.6	11.6		6.7	
CAN MENA MEX	2100 2014 2020 2040 2060 2080	5.5 -1.2 0.5 3.7 4.4	$ \begin{array}{c} 13.0 \\ -4.6 \\ 0.5 \\ 10.3 \end{array} $	1.6 0.7			7.0		81.3
CAN MENA MEX	2014 2020 2040 2060 2080	-1.2 0.5 3.7 4.4	-4.6 0.5 10.3	0.7	1.9	11.6	1.9	5.0	78.7
MENA	2020 2040 2060 2080	$0.5 \\ 3.7 \\ 4.4$	$0.5 \\ 10.3$				7.8	6.6	74.5
MENA	$2040 \\ 2060 \\ 2080$	$3.7 \\ 4.4$	10.3		0.5	11.1	16.7	1.5	26.5
MENA MEX	$2060 \\ 2080$	4.4		0.6	0.5	11.1	18.9	1.9	28.4
MENA MEX	2080			0.0	0.4	11.1	23.4	4.1	30.1
MENA MEX	2080		12.0	0.4	0.3	11.1	24.8	4.5	32.0
MENA MEX			11.5	0.3	0.2	11.1	28.0	3.3	38.4
MEX		4.4	11.3	1.0	1.0	11.1	28.9	2.8	45.8
MEX	2014	-1.6	-7.6	0.9	1.1	8.1	2.3	0.9	18.8
MEX	2020	-0.2	-2.5	0.3	0.8	8.1	3.5	1.2	31.4
MEX	2040	2.1	5.9	0.7	0.9	8.1	6.0	1.7	64.0
MEX	2060	3.3	8.4	0.9	1.1	8.1	7.2	1.7	84.1
MEX	2080	3.5	7.9	1.1	1.4	8.1	7.6	2.6	96.2
	2100	3.5	7.4	1.3	1.6	8.1	8.2	3.8	109.3
	2014	-1.5	-6.5	0.9	1.6	9.2	4.4	2.9	15.1
	2020	0.0	-1.2	0.7	0.6	9.2	4.6	3.3	17.2
	2020	2.4	7.1	0.3	0.3	9.2	5.3	4.1	22.6
	2040	3.0	8.9	0.0	-0.1	9.2	5.6	4.2	23.6
	2000	2.6	7.9	-0.1	-0.3	9.2	5.6	4.2	23.0
	2100	2.0	7.2	-0.1	-0.5	9.2	6.3	12.9	24.5
	2100	2.2	1.2	-0.2	-0.5	9.2	0.5	12.9	27.0
SAF	2014	-2.0	-8.8	2.3	0.0	6.7	15.4	4.0	20.7
	2020	0.0	-2.9	0.0	1.5	6.7	14.9	5.4	21.7
	2040	2.2	3.7	1.0	1.9	6.7	14.4	12.6	21.7
	2060	2.3	6.2	0.7	1.4	6.7	14.2	17.2	20.0
	2080	2.7	5.6	1.0	1.4	6.7	16.5	17.1	21.9
	2100	3.0	5.9	1.2	2.0	6.7	17.7	15.4	25.2
SAP	2014	-0.8	-3.9	0.3	0.8	11.8	3.2	0.6	24.4
	2020	0.8	1.6	0.4	0.6	11.8	3.1	0.6	23.3
	2040	4.1	11.3	0.3	0.4	11.8	3.8	0.5	24.2
	2060	4.7	13.5	0.2	0.2	11.8	3.7	0.6	27.7
	2080	4.1	12.2	0.0	-0.1	11.8	3.9	1.7	27.7
	2100	3.6	11.1	-0.2	-0.4	11.8	4.4	2.6	27.0
SLA	2014	-0.4	-2.2	1.0	0.9	12.8	1.7	3.6	28.9
	2020	1.5	3.1	0.4	0.7	12.8	1.9	4.4	35.3
	2040	4.3	12.7	0.0	0.0	12.8	2.4	4.4	47.0
	2040	4.8	15.1	-0.1	-0.3	12.8	2.5	4.0	49.0
	2000	4.5	13.9	-0.1	-0.2	12.8	2.2	4.9	49.5
		4.3	13.0	-0.1	-0.2	12.8	2.2	7.5	58.6

Appendix Table A24 Continued: Global Tax Cut Macro Aggregates and Tax Rates

			*		Supply	5		line. Tax Rate	
	Year	GDP	Capital Stock	Low Skilled	High Skilled	Corporate Tax	Income Tax	Pension Tax	Consumption Tax
SOV	2014	0.0	-7.1	0.0	0.0	8.1	7.7	2.1	38.6
	2020	0.0	-1.7	2.1	1.7	8.1	9.0	3.1	48.0
	2040	2.0	6.0	0.0	0.8	8.1	9.8	3.4	56.1
	2060	3.4	8.0	0.8	1.4	8.1	9.1	1.1	49.0
	2080	3.5	7.8	1.0	1.5	8.1	7.6	1.2	41.6
	2100	3.3	7.3	1.2	1.5	8.1	8.9	2.6	48.6
SSA	2014	4.0	-1.7	0.0	0.0	14.2	3.7	0.1	23.9
	2020	1.1	4.2	0.0	0.0	14.2	4.2	0.1	29.9
	2040	5.2	15.6	0.0	0.1	14.2	5.0	0.1	43.9
	2060	6.0	18.2	-0.1	0.0	14.2	5.1	0.1	44.4
	2080	5.4	16.7	-0.1	-0.2	14.2	4.8	0.1	39.3
	2100	4.9	15.4	-0.4	-0.5	14.2	4.4	0.2	33.5
EEU	2014	-2.4	-7.3	0.0	0.0	7.0	8.2	10.3	37.8
	2020	-2.2	-2.3	2.8	0.0	7.0	9.0	12.7	40.9
	2040	2.1	5.1	1.1	1.9	7.0	9.5	9.0	53.5
	2060	3.6	7.6	1.7	2.1	7.0	9.4	6.8	55.4
	2080	3.7	7.6	1.8	2.7	7.0	12.0	16.2	58.3
	2100	3.6	6.6	1.9	2.3	7.0	13.6	15.0	75.7

Appendix Table A24 Continued: Global Tax Cut Macro Aggregates and Tax Rates

	Marginal Product Global Wage Rate Marginal Product of Labo							
	Year	of Capital	Interest Rate	Low Skilled	High Skilled	Low Skilled	High Skilled	
USA	2014	14.51	5.89	1.00	2.46	1.00	2.46	
0.511	2014	14.01	5.87	1.00	2.43	1.00	2.40	
	2025	14.94	6.25	1.00	2.36	1.00	2.36	
	2020	15.68	6.87	0.98	2.27	0.98	2.27	
	2035	16.55	7.59	0.96	2.18	0.96	2.18	
	2040	17.60	8.47	0.93	2.09	0.93	2.09	
	2040	17.34	8.25	0.96	2.03	0.96	2.03	
	2080	16.21	7.31	1.00	2.09	1.00	2.09	
	2100	15.78	6.95	1.02	2.12	1.02	2.12	
WEU	2014	14.18	5.89	0.36	0.75	1.08	2.25	
	2020	14.16	5.87	0.48	0.99	1.09	2.20	
	2020	17.11	8.47	0.40	1.61	0.98	2.01	
	2040	16.86	8.25	0.15	2.10	0.98	2.01 2.10	
	2000	15.79	7.31	1.01	2.10	1.01	2.10	
	2000 2100	15.38	6.95	1.01	2.04	1.01	2.04	
JKSH	2014	14.56	5.89	0.58	0.95	1.17	1.91	
11.011	2014 2020	14.54	5.89 5.87	0.58	1.19	1.17	1.91	
	2020	14.54 17.65	5.87 8.47	1.08	1.19	1.17	1.92	
	2040 2060	17.39	8.25	1.08	1.80	1.04	1.75	
	2000 2080		8.25 7.31	1.05	1.81	1.05	1.81	
		16.26						
	2100	15.82	6.95	1.07	1.94	1.07	1.94	
CHI	2014	14.20	5.89	0.15	0.31	1.09	2.20	
	2020	14.18	5.87	0.31	0.63	1.09	2.22	
	2040	17.14	8.47	0.71	1.52	0.96	2.09	
	2060	16.89	8.25	0.92	2.28	0.92	2.28	
	2080	15.82	7.31	0.92	2.49	0.92	2.49	
	2100	15.40	6.95	0.93	2.54	0.93	2.54	
IND	2014	14.50	5.89	0.08	0.12	1.20	1.83	
	2020	14.48	5.87	0.14	0.20	1.21	1.82	
	2040	17.56	8.47	0.28	0.43	1.08	1.66	
	2060	17.30	8.25	0.53	0.82	1.08	1.70	
	2080	16.18	7.31	0.75	1.20	1.11	1.78	
	2100	15.75	6.95	0.97	1.55	1.13	1.80	
RUS	2014	14.27	5.89	0.30	0.67	1.05	2.34	
	2020	14.25	5.87	0.39	0.84	1.06	2.31	
	2040	17.23	8.47	0.60	1.28	0.96	2.06	
	2060	16.98	8.25	0.97	2.07	0.97	2.07	
	2080	15.90	7.31	1.01	2.14	1.01	2.14	
	2100	15.49	6.95	1.03	2.14	1.03	2.14	
BRA	2014	15.05	5.89	0.23	0.36	1.15	1.85	
	2020	15.03	5.87	0.38	0.61	1.16	1.84	
	2040	18.36	8.47	0.79	1.26	1.03	1.67	
	2060	18.08	8.25	1.03	1.72	1.03	1.72	
	2080	16.87	7.31	1.07	1.79	1.07	1.79	
	2100	16.41	6.95	1.09	1.81	1.09	1.81	

Appendix Table A25: Global Tax Matching Projected Factor Prices and Marginal Products

		Marginal Product	Global	Wage	e Rate	Marginal Pro	Marginal Product of Labor		
	Year	of Capital	Interest Rate	Low Skilled	High Skilled	Low Skilled	High Skilled		
GBR	2014	14.17	5.89	0.82	1.40	1.16	1.99		
	2020	14.15	5.87	0.83	1.44	1.16	2.00		
	2040	17.09	8.47	0.82	1.44	1.04	1.83		
	2060	16.84	8.25	0.87	1.57	1.04	1.87		
	2080	15.77	7.31	0.96	1.77	1.07	1.97		
	2100	15.36	6.95	1.02	1.95	1.07	2.04		
CAN	2014	14.13	5.89	0.69	1.22	1.15	2.03		
	2020	14.11	5.87	0.81	1.41	1.16	2.02		
	2040	17.03	8.47	1.08	1.89	1.04	1.83		
	2060	16.79	8.25	1.05	1.86	1.05	1.86		
	2080	15.73	7.31	1.09	1.90	1.09	1.90		
	2000 2100	15.32	6.95	1.11	1.91	1.11	1.91		
MENA	2014	13.91	5.89	0.10	0.14	1.23	1.87		
	2020	13.89	5.87	0.15	0.23	1.23	1.87		
	2020	16.72	8.47	0.30	0.46	1.11	1.70		
	2040	16.48	8.25	0.55	0.85	1.11	1.74		
	2000	15.46	7.31	0.33	1.23	1.14	1.81		
	2100	15.06	6.95	0.99	1.60	1.15	1.85		
MEX	2014	13.99	5.89	0.24	0.53	1.06	2.35		
	2020	13.97	5.87	0.38	0.83	1.06	2.34		
	2020	16.83	8.47	0.73	1.65	0.95	2.18		
	2040	16.59	8.25	0.73	2.27	0.93	2.13		
	2000	15.55	7.31	0.95	2.27	0.95	2.27		
	2000 2100	15.15	6.95	0.90	2.33	0.90	2.33		
SAF	2014	13.81	5.89	0.21	0.43	1.09	2.30		
0111	2014	13.79	5.87	0.21	0.53	1.09	2.30		
	2020	16.57	8.47	0.25	0.55	0.98	2.30		
	2040	16.34	8.25	0.55	1.21	0.98	2.12 2.19		
	2000	15.33	7.31	0.54 0.71	1.21	1.00	2.19		
	2080 2100	13.33	6.95	0.71	2.05	1.00	2.29		
SAP	2014	14.18	5.89	0.11	0.23	1.09	2.21		
	2020	14.16	5.87	0.28	0.57	1.08	2.21		
	2020	17.10	8.47	0.69	1.52	0.95	2.13		
	2040	16.85	8.25	0.93	2.23	0.93	2.13		
	2000	15.79	7.31	0.95	2.25	0.95	2.23		
	2080	15.38	6.95	0.95	2.30	0.95	2.30		
SLA	2014	14.26	5.89	0.17	0.36	1.06	2.29		
	2020	14.24	5.87	0.21	0.46	1.07	2.27		
	2040	17.21	8.47	0.33	0.69	0.96	2.06		
	2060	16.96	8.25	0.51	1.14	0.96	2.12		
	2080	15.88	7.31	0.69	1.58	0.98	2.24		
	2100	15.47	6.95	0.86	2.00	0.99	2.29		

Appendix Table A25 Continued: Global Tax Matching Projected Factor Prices and Marginal Products

	Global Tax Cut Projected Factor Prices and Marginal Products						
		Marginal Product	Global	Wage	Rates	Marginal Product of Labor	
	Year	of Capital	Interest Rate	Low Skilled	High Skilled	Low Skilled	High Skilled
SOV	2014	13.91	5.89	0.12	0.24	1.10	2.24
	2020	13.89	5.87	0.17	0.34	1.10	2.24
	2040	16.72	8.47	0.29	0.60	0.99	2.05
	2060	16.48	8.25	0.50	1.09	0.98	2.13
	2080	15.46	7.31	0.68	1.57	0.99	2.28
	2100	15.06	6.95	0.86	2.05	0.99	2.37
SSA	2014	14.37	5.89	0.05	0.10	1.10	2.13
	2020	14.35	5.87	0.10	0.20	1.10	2.14
	2040	17.37	8.47	0.24	0.48	0.98	1.97
	2060	17.12	8.25	0.46	0.97	0.97	2.04
	2080	16.02	7.31	0.66	1.45	0.99	2.18
	2100	15.60	6.95	0.84	1.96	0.98	2.29
EEU	2014	13.84	5.89	0.09	0.18	1.10	2.25
	2020	13.82	5.87	0.20	0.41	1.10	2.25
	2040	16.61	8.47	0.50	1.05	0.98	2.10
	2060	16.38	8.25	0.96	2.20	0.96	2.20
	2080	15.37	7.31	0.97	2.40	0.97	2.40
	2100	14.98	6.95	1.00	2.35	1.00	2.35

Appendix Table A25 Continued: Global Tax Matching Projected Factor Prices and Marginal Products

Appendix Table A26: Parameters Used in Simulations

	Capital Share	Low-Skilled Labor Share	High-Skilled Labor Share	Depreciation Rate	Time Preference	Elasticity of Intertemporal	Substitution Labor/Leisure
	α	β_l	β_h	δ_K	δ	γ	ρ
USA	0.35	0.4	0.25	0.075	-0.043	0.25	0.4
WEU	0.35	0.4	0.25	0.075	-0.079	0.25	0.4
Japan	0.35	0.4	0.25	0.075	-0.076	0.25	0.4
China	0.35	0.4	0.25	0.075	-0.044	0.25	0.4
India	0.35	0.4	0.25	0.075	0.099	0.25	0.4
Russia	0.35	0.4	0.25	0.075	0.117	0.25	0.4
BRA	0.35	0.4	0.25	0.075	0.086	0.25	0.4
GBR	0.35	0.4	0.25	0.075	0.003	0.25	0.4
CAN	0.35	0.4	0.25	0.075	-0.060	0.25	0.4
MENA	0.35	0.4	0.25	0.075	0.055	0.25	0.4
MEX	0.35	0.4	0.25	0.075	0.066	0.25	0.4
SAF	0.35	0.4	0.25	0.075	0.005	0.25	0.4
SAP	0.35	0.4	0.25	0.075	0.039	0.25	0.4
SLA	0.35	0.4	0.25	0.075	0.084	0.25	0.4
SOV	0.35	0.4	0.25	0.075	0.025	0.25	0.4
SSA	0.35	0.4	0.25	0.075	0.003	0.25	0.4
EEU	0.35	0.4	0.25	0.075	-0.027	0.25	0.4

	Leisure Preference	Labor Productivity	Technical Progress	Age of Retirement	Corporate Tax Tax Rate
	ε	ξ	λ	ā	τ^{c}
USA	1.5	1.000	0.01	66	34.6
WEU	1.5	0.310	0.01	65	25.4
Japan	1.5	0.470	0.01	61	35.5
China	1.5	0.112	0.01	60	26.0
India	1.5	0.056	0.01	60	33.9
Russia	1.5	0.270	0.01	60	27.9
BRA	1.5	0.170	0.01	65	47.3
GBR	1.5	0.700	0.01	55	25.0
CAN	1.5	0.580	0.01	65	23.9
MENA	1.5	0.068	0.01	60	17.5
MEX	1.5	0.200	0.01	65	19.7
SAF	1.5	0.180	0.01	60	14.3
SAP	1.5	0.075	0.01	58	25.3
SLA	1.5	0.150	0.01	65	27.5
SOV	1.5	0.100	0.01	62	17.5
SSA	1.5	0.035	0.01	55	30.5
EEU	1.5	0.060	0.01	65	15.1

Appendix Table A27: Summary of Data Sources

	Sources	Reported In
Demographics and Households		
Population (Including Projections)	United Nations (2016d)	Table A1, A3
Fertility	United Nations (2016a)	Table A2
Immigration	United Nations (2016b)	Tables A3, A1
Mortality	United Nations (2016c)	Tables A3, A1
Age Productivity Profile	Auerbach and Kotlikoff (1987)	Eqn. 19
Initial Regional Labor Productivity	Matches GDP as reported by International Monetary Fund (2016)	Table A8
Time Preference (δ)	Matches private consumption share of GDP as reported by International Monetary Fund (2016)	Table A7
Regional Share of Global Private Assets	Credit Swiss Global Wealth Report Credit Suisse (2017)	Table A4
Initial Age-Asset Distribution	Matches the asset age-distribution reported in the U.S. Survey of Consumer Finances (Bricker et al. (2014))	
Government Expenditure		
Retirement Age	World Bank (2016a) Reports and Trading Economics (2017)	Table A6
Gov. Transfers and Purchases by Sector	International Monetary Fund (2016), International Monetary Fund (2014), and Article IV Reports	Table A5
Health Spending Age Profile	Data constructed from the following sources: (i) Data reported by each country to the World Bank and regional development banks (ii) For the U.S., Centers for Medicare for Medicare and Medicaid Services, Office of the Actuary, National Health Statistics Group; (iii) Websites of major public health service institutions, usually called 'Social Security Institutes'. When the latter, we used the age distribution of medical costs for government-sponsored beneficiaries.	
Education Expenditure Age Profile	When available, World Bank and regional development bank reports. Alternatively, government websites with country specific budgeted spending on schools, higher education, scholarship programs, and training programs. Representative country data used for some regions when data for all countries was unavailable.	
Government Revenue		
Consumption/Income Tax Ratio	International Monetary Fund (2016), International Monetary Fund (2014), and Article IV Reports	Table A5
Corporate Tax METR and Rebate	METRs from Mintz and Bazel (2017), when unavailable statutory rates from KPMG (2017)	Table 1
Share of Pension Expenditure Financed by Payroll Tax	World Bank (2016b) and IMF Article IV Reports	Table A5
Pension Replacement Rate	Matches Pension Benefits as % of GDP as reported in International Monetary Fund (2014) and World Bank (2016b)	Table A6
Pension Contribution Ceiling	OECD, Pension Commissions, and World Bank	Table A6
Interest on National Debt	International Monetary Fund (2016) and Article IV Reports	
Energy Sector		
Regional Fossil Fuel/Energy Rents	Fossil fuel rents from World Bank (2016b)	Table A4
Share of Energy Rents Owned by Gov.	Constructed based on World Bank (2016b)	Table A5

List of Countries by Region

The following is the list of countries in each region. Each region's GDP, population, and assets are the sum of constituent countries. Other macroeconomic aggregates the model is calibrated on, such as consumption share of GDP, and government fiscal policies, such as government pensions as a share of GDP, are a GDP weighted average of countries in the region. For a handful of countries, constituting a small percentage of world population and GDP, this data is incomplete or unavailable. These countries are indicated with an asterisk (*). These countries are not included in calculating the regional average.

- BRA: Brazil
- CAN: Australia, Canada, New Zealand
- CHI: China
- EEU: Belarus, Bosnia and Herzegovina, Montenegro, Republic of Moldova, Romania, Serbia, Ukraine, Albania^{*}, Armenia^{*}, Bulgaria^{*}, Kosovo^{*}
- GBR: United Kingdom
- IND: India
- JKSH: Japan, South Korea, Singapore, Hong Kong
- MENA: Afghanistan, Algeria, Egypt, Iran (Islamic Republic of), Jordan, Kuwait, Lebanon, Libya, Morocco, Qatar, Saudi Arabia, Sudan, Syrian Arab Republic, Tunisia, Turkey, United Arab Emirates, Western Sahara, Yemen, Pakistan^{*}, Bahrain^{*}, Ethiopia^{*}, Iraq^{*}, Mali^{*}, Oman^{*}
- MEX: Mexico
- RUS: Russian Federation
- SAF: South Africa
- SAP: Brunei Darussalam, Cambodia, Indonesia, Lao People's Democratic Republic, Malaysia, Philippines, Thailand, Timor-Leste, Viet Nam, Bangladesh, Nepal, Sri Lanka
- SLA: Antigua and Barbuda, Argentina, Bahamas, Barbados, Belize, Bolivia (Plurinational State of), Chile, Colombia, Costa Rica, Dominican Republic, Ecuador, El Salvador, Grenada, Guatemala, Guyana, Haiti, Honduras, Jamaica, Nicaragua, Panama, Paraguay, Peru, Saint Lucia, Saint Vincent and the Grenadines, Sao Tome and Principe, Suriname, Trinidad and Tobago, Uruguay, Venezuela (Bolivarian Republic of)
- SOV: Armenia, Azerbaijan, Georgia, Kazakhstan, Kyrgyzstan, Mongolia, Tajikistan, Turkmenistan, Uzbekistan
- SSA: Angola, Botswana, Burkina Faso, Cameroon, Central African Republic, Congo, Côte d'Ivoire, Democratic Republic of the Congo, Equatorial Guinea, Eritrea, Gabon, Gambia, Ghana, Kenya, Lesotho, Liberia, Madagascar, Mozambique, Namibia, Niger, Nigeria, Rwanda, Senegal, Sierra Leone, South Sudan, Swaziland, Togo, Tonga, Uganda, United Republic of Tanzania, Zambia, Zimbabwe
- USA: United States

• WEU: Andorra, Austria, Belgium, Channel Islands, Croatia, Denmark, Estonia, Faeroe Islands, Finland, France, Germany, Greece, Iceland, Ireland, Isle of Man, Italy, Latvia, Liechtenstein, Lithuania, Luxembourg, Monaco, Netherlands, Norway, Portugal, Slovenia, Spain, Sweden, Switzerland